DOI QR코드

DOI QR Code

An integrator based wind speed estimator for wind turbine control

  • Elmaati, Younes Ait (Laboratory of Electrical Engineering and Control Systems (LGECOS), National School of Applied Sciences, Cadi Ayyad University) ;
  • El Bahir, Lhoussain (Laboratory of Electrical Engineering and Control Systems (LGECOS), National School of Applied Sciences, Cadi Ayyad University) ;
  • Faitah, Khalid (Laboratory of Electrical Engineering and Control Systems (LGECOS), National School of Applied Sciences, Cadi Ayyad University)
  • Received : 2015.06.28
  • Accepted : 2015.10.13
  • Published : 2015.10.25

Abstract

In this paper, an integrator based method to estimate the effective wind speed in wind turbine systems is proposed. First, the aerodynamic torque was accurately estimated through a proportional gain based observer where the generator speed is the measured output of the system. The torque signal contains not only useful frequencies of the wind, but also high frequencies and the ones due to structural vibration. The useful information of the wind signal is low frequency. A spectral analysis permitted the determination of the useful frequencies. The high frequencies were then filtered before introducing the torque signal in the wind speed observer. The desired effective wind speed was extracted through an integrator based observer using the previously estimated aerodynamic torque. The strength of the method is to avoid numerical solutions used in literature of the wind speed estimation. The effectiveness of the proposed wind speed estimator and its use to control the generator speed has been tested under turbulent situations using the FAST software (Fatigue, Aerodynamics, Structures, and Turbulence), for large scale Megawatt turbine.

Keywords

References

  1. An, Y., and Pandey, M.D. (2005), "A comparison of methods of extreme wind speed estimation", J. Wind Eng. Ind. Aerod., 93(7), 535-545. https://doi.org/10.1016/j.jweia.2005.05.003
  2. Beltran, J., Guerrero, J.J., Melero, J.J. and Llombart, A. (2014), "Detection of nacelle anemometer faults in a wind farm minimizing the uncertainty", Wind Energ., 16(6), 657- 669.
  3. Bhowmik, S. and Spee, R. (1998), "Wind speed estimation based variable speed wind power generation", Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, Aachen, August.
  4. Bianchi, F.D., Battista, H. and Mantz, R.J. (2011), Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design, London, Springer.
  5. Bongers, P. (1994), Modeling and identification of flexible wind turbines and a factorizational approach to robust control, Ph.D. Dissertation, Delft University of Technology.
  6. Boukhezzar, B., Lupu, L., Siguerdidjane, H. and Hand, M. (2007), "Multivariable control strategy for variable speed, variable pitch wind turbines", Renew. Energ., 32(8), 1273-1287. https://doi.org/10.1016/j.renene.2006.06.010
  7. Bourlis, D. and Bleijs, J.A.M. (2010), "A wind speed estimation method using adaptive kalman filtering for a variable speed stall regulated wind turbine", Proceedings of the IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems, Singapore, June.
  8. Chauvin, J. and Petit, N. (2010), "Reconstruction of the fourier expansion of inputs of linear time-varying systems", Automatica, 46(2), 354-361. https://doi.org/10.1016/j.automatica.2009.11.001
  9. Cutler, N.J., Outhred, H.R. and MacGill, I.F. (2012), "Using nacelle-based wind speed observations to improve power curve modeling for wind power forecasting", Wind Energ., 15(2), 245-258. https://doi.org/10.1002/we.465
  10. Deepa S.N. and Sheela, K.G. (2014), "New criteria to fix number of hidden neurons in multilayer perceptron networks for wind speed prediction", Wind Struct., 18(6), 619-631. https://doi.org/10.12989/was.2014.18.6.619
  11. Garcia, A., Torres, J.L., Prieto, E. and De Francisco, A. (1998), "Fitting wind speed distributions: a case study", Sol. Energy, 62(2), 139-144. https://doi.org/10.1016/S0038-092X(97)00116-3
  12. Hafidi, G. and Chauvin, J. (2012), "Wind speed estimation for wind turbine control", Proceedings of the International Conference on Control Applications, Dubrovnik, October.
  13. Hammerum, K., Brath, P. and Poulsen, N.K. (2007), "A fatigue approach to wind turbine control", J. Phys. Conf. Ser., 75(1).
  14. Hooft, E.L. Van Der, and Van Engelen, T.G. (2004), "Estimated wind speed feed forward control for wind turbine operation optimization", Proceedings of the European Wind Energy Conference, London, November.
  15. Hui, Y., Yang, Q. and Li, Z. (2014), "An alternative method for estimation of annual extreme wind speeds", Wind Struct., 19(2), 169-184. https://doi.org/10.12989/was.2014.19.2.169
  16. http.//wind.nrel.gov/designcodes/simulators/fast/.
  17. http.//wind.nrel.gov/ designcodes/preprocessors/turbsim/.
  18. Jabbari, F. (1997), "Output feedback controllers for systems with structured uncertainty", IEEE T. Automat. Contr., 42(5), 715-719. https://doi.org/10.1109/9.580887
  19. Lee, J.W., Kim, J.K., Han, J.H. and Shin, H.K. (2013), "Active load control for wind turbine blades using trailing edge flap", Wind Struct., 16(3), 263-278. https://doi.org/10.12989/was.2013.16.3.263
  20. Jonkman, J.M. and Buhl, M.L. (2005), "Fast user's guide".
  21. Jonkman, J.M. and Buhl, M. L. (2007), "TurbSim user's guide".
  22. Justus, C.G., Hargraves, W.R., Mikhail, A. and Graber, D. (1978), "Methods for estimating wind speed frequency distributions", J. Appl. Meteorol., 17(3), 350-353. https://doi.org/10.1175/1520-0450(1978)017<0350:MFEWSF>2.0.CO;2
  23. Kanev, S. and Van Engelen, T. (2010), "Wind turbine extreme gust control", Wind Energ., 13(1), 18-35. https://doi.org/10.1002/we.338
  24. Khalil, W.H. (2007), "Modeling and performance of a wind turbine", Anbar J. Eng. Sci., 1(1), 116-130.
  25. Kodama, N., Matsuzaka, T. and Inomata, N. (2000), "Power variation control of a wind turbine generator using probabilistic optimal control, including feed-forward control from wind speed", Wind Eng., 24(1), 13-23. https://doi.org/10.1260/0309524001495378
  26. Kusiak, A. and Li, W. (2010), "Estimation of wind speed: a data-driven approach", J. Wind Eng. Ind. Aerod., 98(10-11), 559-567. https://doi.org/10.1016/j.jweia.2010.04.010
  27. Laks, J.H., Pao, L.Y. and Wright, A.D. (2009), "Control of wind turbines: past, present, and future", Proceedings of the American Control Conference, St. Louis, MO, June.
  28. Lombardo, F.T. (2012), "Improved extreme wind speed estimation for wind engineering applications", J. Wind Eng. Ind. Aerod., 104-106, 278-284. https://doi.org/10.1016/j.jweia.2012.02.025
  29. Mohandes, M., Rehman, S. and Rahman, S.M. (2011), "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (anfis)", Appl. Energ., 88(11), 4024-4032. https://doi.org/10.1016/j.apenergy.2011.04.015
  30. Novak, P., Ekelund, T., Jovik, I. and Schmidtbauer, B. (1995), "Modeling and control of variable speed wind turbine drive-system dynamics", IEEE Control Syst., 15(4), 28 - 38. https://doi.org/10.1109/37.408463
  31. Ohtsubo, K. and Kajiwara, H. (2004), "Lpv technique for rotational speed control of wind turbines using measured wind speed", Proceedings of the Oceans, Kobe, November.
  32. Ostergaard, K.Z., Brath, P. and Stoustrup, J. (2007), "Estimation of effective wind speed", J. Phys. Conf. Ser., 75(1).
  33. Pao, L.Y. and Johnson, K.E. (2009), "A tutorial on the dynamics and control of wind turbines and wind farms", Proceedings of the American Control Conference, St. Louis, MO, June.
  34. Perrin, O., Rootzen, H. and Taesler, R. (2006), "A discussion of statistical methods used to estimate extreme wind speeds", Theor. Appl. Climatol., 85(3-4), 203-215. https://doi.org/10.1007/s00704-005-0187-3
  35. Sedghi, M., Hannani, S.K. and Boroushaki, M. (2015), "Estimation of weibull parameters for wind energy application in Iran", Wind Struct., 21(2), 203-221. https://doi.org/10.12989/was.2015.21.2.203
  36. Seguro, J.V. and Lambert, T.W. (2000), "Modern estimation of the parameters of the weibull wind speed distribution for wind energy analysis", J. Wind Eng. Ind. Aerod., 85(1), 75-84. https://doi.org/10.1016/S0167-6105(99)00122-1
  37. Sloth, C., Esbensen, T., and Stoustrup, J. (2011), "Robust and fault-tolerant linear parameter-varying control of wind turbines", Mechatronics, 21(4), 645-659. https://doi.org/10.1016/j.mechatronics.2011.02.001
  38. Spencer, M.D., Stol, K.A., Unsworth, C.P., Cater, J.E. and Norris, S.E. (2013), "Model predictive control of a wind turbine using short-term wind field predictions", Wind Energ., 16(3), 417-434. https://doi.org/10.1002/we.1501
  39. Wright, A.D. (2004), "Modern control design for flexible wind turbines".
  40. Wright, A.D. and Balas, M.J. (2003), "Design of state-space-based control algorithms for wind turbine speed regulation", J. Sol. Energy Eng., 125(4), 386. https://doi.org/10.1115/1.1621673
  41. Wright, A.D., Fingersh, L.J. and Stol, K. (2007), "Designing and testing controls to mitigate tower dynamic loads in the controls advance research turbine".
  42. Wu, S., Wang, Y. and Cheng, S. (2013), "Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system", Neurocomputing, 102, 163-175. https://doi.org/10.1016/j.neucom.2011.12.051

Cited by

  1. Fault Tolerant Control of Internal Faults in Wind Turbine: Case Study of Gearbox Efficiency Decrease vol.2018, pp.1542-3034, 2018, https://doi.org/10.1155/2018/9538489
  2. Optimal Fault Tolerant Control of Large-Scale Wind Turbines in the Case of the Pitch Actuator Partial Faults vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/6210407
  3. Mathematical representation of Wind Turbine Power reliability vol.1921, pp.None, 2015, https://doi.org/10.1088/1742-6596/1921/1/012126
  4. Long-term fatigue reliability enhancement of horizontal axis wind turbine blade vol.33, pp.2, 2015, https://doi.org/10.12989/was.2021.33.2.169