References
- Aladwani, A., Arafa, M., Aldraihem, O. and Baz, A. (2012), "Cantilevered piezoelectric energy harvester with a dynamic magnifier", J. Vib. Acoust., 34(3), 031004.
- Aladwani, A., Aldraihem, O. and Baz, A. (2013), "Single degree of freedom shear-mode piezoelectric energy harvester", J. Vib. Acoust., 135, 051011. https://doi.org/10.1115/1.4023950
- Aldraihem, O. and Baz, A. (2011), "Energy harvester with a dynamic magnifier", J. Intel. Mat. Syst. Str., 22(6), 521-530. https://doi.org/10.1177/1045389X11402706
- Arroyo, E. and Badel, A. (2011), "Electromagnetic vibration energy harvesting device optimization by synchronous energy extraction", Sensor Actuat. A - Phys., 171, 266-273. https://doi.org/10.1016/j.sna.2011.06.024
- Bartsch, U., Gaspar, J. and Paul, O. (2009), "A 2-D electret-based resonant micro energy harvester", Proceedings of the Technical Digest IEEE MEMS, Sorrento, Italy, Jan. 25-29.
- Berdy, D.F., Jung, B., Rhoads, J.F. and Peroulis, D. (2012), "Wide-bandwidth, meandering vibration energy harvester with distributed circuit board inertial mass", Sensor Actuat. A - Phys., 188,148-157. https://doi.org/10.1016/j.sna.2012.01.043
- Casciati, S., Faravelli, L. and Chen, Z. (2012), "Energy harvesting and power management of wireless sensors for structural control applications in civil engineering", Smart Struct. Syst., 10 (3), 299-312. https://doi.org/10.12989/sss.2012.10.3.299
- Chen, J.D., Chen, D., Yuan, T. and Chen, X. (2012), "A multi-frequency sandwich type electromagnetic vibration energy harvester", Appl. Phys. Lett., 100, 213509. https://doi.org/10.1063/1.4722814
- Chen, J., Zhu, G., Yang, W., Jing, Q., Bai, P., Yang, Y., Hou, T.C. and Wang, Z.L. (2013), "Harmonic-Resonator-Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self-Powered Active Vibration Sensor", Adv. Mater. doi:10.1002.
- Dai, X., Miao, X., Sui, L., Zhou, H., Zhao, X. and Ding, G. (2012), "Tuning of nonlinear vibration via topology variation and its application in energy harvesting", Appl. Phys. Lett., 100, 031902. https://doi.org/10.1063/1.3676661
- Erturk, A. and Inman, D.J. (2011), "Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling", J. Sound Vib., 330, 2339-2353. https://doi.org/10.1016/j.jsv.2010.11.018
- Ferrari, M., Ferrari, V., Guizzetti, M., Ando, B., Baglio, S. and Trigona, C. (2010), "Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters", Sensor Actuat. A-Phys., 162, 425-431. https://doi.org/10.1016/j.sna.2010.05.022
- Guan, X.C., Huang, Y.H., Li, H. and Ou, J.P. (2012), "Adaptive MR damper cable control system based on piezoelectric power harvesting", Smart Struct. Syst., 10(1), 33-46. https://doi.org/10.12989/sss.2012.10.1.033
- Jung, H., Kim, I.H. and Koo, J.H. (2011), "A multi-functional cable-damper system for vibration mitigation, tension estimation and energy harvesting", Smart Struct. Syst., 7(5), 379-392. https://doi.org/10.12989/sss.2011.7.5.379
- Kim, S. and Chun, K. (2012), "2D Vibration based MEMS Energy Harvester", Proceedings of the International Conference on Renewable Energies and Power Quality, Santiago de Compostela, Spain, 28th to 30th March.
- Kim, S. and Na, U. (2013), "Energy harvesting techniques for remote corrosion monitoring systems", Smart Struct. Syst., 11(5), 555-567. https://doi.org/10.12989/sss.2013.11.5.555
- Moss, S., Barry, A., Powlesland, I., Galea, S. and Carman, G. P. (2011), "A broadband vibro-impacting power harvester with symmetrical piezoelectric bimorph-stops", Smart Mater. Struct., 20, 045013. https://doi.org/10.1088/0964-1726/20/4/045013
- Moss, S.D., McLeod, J.E., Powlesland, I.G. and Galea, S.C. (2012), "A bi-axial magnetoelectric vibration energy harvester", Sensor Actuat. A - Phys., 175, 165-168. https://doi.org/10.1016/j.sna.2011.12.023
- Nguyen, D.S., Halvorsen, E., Jensen, G.U. and Vogl, A. (2010), "Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs", J. Micromech. Microeng., 20,125009. https://doi.org/10.1088/0960-1317/20/12/125009
- Ramlan, R., Brennan, M.J., Mace, B.R. and Kovacic, I. (2010), "Potential benefits of a non-linear stiffness in an energy harvesting device", Nonlinear Dynam., 59, 545-558. https://doi.org/10.1007/s11071-009-9561-5
- Stanton, S.C., McGehee, C.C. and Mann, B.P. (2009), "Reversible hysteresis for broadband magnetopiezoelastic energy harvesting", Appl. Phys. Lett., 95, 174103.s. https://doi.org/10.1063/1.3253710
- Tvedt, L.G.W., Nguyen, D.S. and Halvorsen, E. (2010), "Nonlinear behavior of an electrostatic energy harvester under wide- and narrowband excitation", J. Microelectromech. S., 19 (2), 305-316. https://doi.org/10.1109/JMEMS.2009.2039017
- Wang, L. and Yuan, F.G. (2008), "Vibration energy harvesting by magnetostrictive material", Smart Mater. Struct., 17, 045009. https://doi.org/10.1088/0964-1726/17/4/045009
- Yang, J., Wen, Y.M. and Li, P. (2011), "Magnetoelectric energy harvesting from vibrations of multiple frequencies", J .Intel. Mat. Syst. Str., 22, 1631-1639. https://doi.org/10.1177/1045389X11406300
- Yang, J., Wen, Y.M., Li, P. and Dai, X.Z. (2011), "A magnetoelectric, broadband vibration-powered generator for intelligent sensor systems", Sensor Actuat. A - Phys., 168, 358-364. https://doi.org/10.1016/j.sna.2011.04.038
- Zhang, Y. and Zhu, B.H. (2012), "Analysis and simulation of multi-mode piezoelectric energy harvesters", Smart Struct. Syst., 9(6), 549. https://doi.org/10.12989/sss.2012.9.6.549
- Zhu, D.B., Beeby, S.P., Tudor, M.J. and Harris, N.R. (2011), "A credit card sized self powered smart sensor node", Sensor Actuat. A - Phys., 169, 317-325. https://doi.org/10.1016/j.sna.2011.01.015
- Zhu, Y., Moheimani, S.O.R. and Yuce, M.R. (2011), "A 2-DOF MEMS Ultrasonic Energy Harvester", IEEE Sens. J., 11(1), 155-161. https://doi.org/10.1109/JSEN.2010.2053922