DOI QR코드

DOI QR Code

Wideband and 2D vibration energy harvester using multiple magnetoelectric transducers

  • Yang, Jin (Department of Optoelectronic Engineering, Research Center of Sensors and Instruments) ;
  • Yu, Qiangmo (Department of Optoelectronic Engineering, Research Center of Sensors and Instruments) ;
  • Zhao, Jiangxin (Department of Optoelectronic Engineering, Research Center of Sensors and Instruments) ;
  • Zhao, Nian (Department of Optoelectronic Engineering, Research Center of Sensors and Instruments) ;
  • Wen, Yumei (Department of Optoelectronic Engineering, Research Center of Sensors and Instruments) ;
  • Li, Ping (Department of Optoelectronic Engineering, Research Center of Sensors and Instruments)
  • Received : 2014.03.11
  • Accepted : 2015.01.09
  • Published : 2015.10.25

Abstract

This paper investigates a magnetoelectric (ME) vibration energy harvester that can scavenge energy in arbitrary directions in a plane as well as wide working bandwidth. In this harvester, a circular cross-section cantilever rod is adopted to extract the external vibration energy due to the capability of it's free end oscillating in arbitrary in-plane directions. And permanent magnets are fixed to the free end of the cantilever rod, causing it to experience a non-linear force as it moves with respect to stationary ME transducers and magnets. The magnetically coupled cantilever rod exhibits a nonlinear and two-mode motion, and responds to vibration over a much broader frequency range than a standard cantilever. The effects of the magnetic field distribution and the magnetic force on the harvester's voltage response are investigated with the aim to obtain the optimal vibration energy harvesting performances. A prototype harvester was fabricated and experimentally tested, and the experimental results verified that the harvester can extract energy from arbitrary in-plane directions, and had maximum bandwidth of 5.5 Hz, and output power of 0.13 mW at an acceleration of 0.6 g (with $g=9.8ms^{-2}$).

Keywords

References

  1. Aladwani, A., Arafa, M., Aldraihem, O. and Baz, A. (2012), "Cantilevered piezoelectric energy harvester with a dynamic magnifier", J. Vib. Acoust., 34(3), 031004.
  2. Aladwani, A., Aldraihem, O. and Baz, A. (2013), "Single degree of freedom shear-mode piezoelectric energy harvester", J. Vib. Acoust., 135, 051011. https://doi.org/10.1115/1.4023950
  3. Aldraihem, O. and Baz, A. (2011), "Energy harvester with a dynamic magnifier", J. Intel. Mat. Syst. Str., 22(6), 521-530. https://doi.org/10.1177/1045389X11402706
  4. Arroyo, E. and Badel, A. (2011), "Electromagnetic vibration energy harvesting device optimization by synchronous energy extraction", Sensor Actuat. A - Phys., 171, 266-273. https://doi.org/10.1016/j.sna.2011.06.024
  5. Bartsch, U., Gaspar, J. and Paul, O. (2009), "A 2-D electret-based resonant micro energy harvester", Proceedings of the Technical Digest IEEE MEMS, Sorrento, Italy, Jan. 25-29.
  6. Berdy, D.F., Jung, B., Rhoads, J.F. and Peroulis, D. (2012), "Wide-bandwidth, meandering vibration energy harvester with distributed circuit board inertial mass", Sensor Actuat. A - Phys., 188,148-157. https://doi.org/10.1016/j.sna.2012.01.043
  7. Casciati, S., Faravelli, L. and Chen, Z. (2012), "Energy harvesting and power management of wireless sensors for structural control applications in civil engineering", Smart Struct. Syst., 10 (3), 299-312. https://doi.org/10.12989/sss.2012.10.3.299
  8. Chen, J.D., Chen, D., Yuan, T. and Chen, X. (2012), "A multi-frequency sandwich type electromagnetic vibration energy harvester", Appl. Phys. Lett., 100, 213509. https://doi.org/10.1063/1.4722814
  9. Chen, J., Zhu, G., Yang, W., Jing, Q., Bai, P., Yang, Y., Hou, T.C. and Wang, Z.L. (2013), "Harmonic-Resonator-Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self-Powered Active Vibration Sensor", Adv. Mater. doi:10.1002.
  10. Dai, X., Miao, X., Sui, L., Zhou, H., Zhao, X. and Ding, G. (2012), "Tuning of nonlinear vibration via topology variation and its application in energy harvesting", Appl. Phys. Lett., 100, 031902. https://doi.org/10.1063/1.3676661
  11. Erturk, A. and Inman, D.J. (2011), "Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling", J. Sound Vib., 330, 2339-2353. https://doi.org/10.1016/j.jsv.2010.11.018
  12. Ferrari, M., Ferrari, V., Guizzetti, M., Ando, B., Baglio, S. and Trigona, C. (2010), "Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters", Sensor Actuat. A-Phys., 162, 425-431. https://doi.org/10.1016/j.sna.2010.05.022
  13. Guan, X.C., Huang, Y.H., Li, H. and Ou, J.P. (2012), "Adaptive MR damper cable control system based on piezoelectric power harvesting", Smart Struct. Syst., 10(1), 33-46. https://doi.org/10.12989/sss.2012.10.1.033
  14. Jung, H., Kim, I.H. and Koo, J.H. (2011), "A multi-functional cable-damper system for vibration mitigation, tension estimation and energy harvesting", Smart Struct. Syst., 7(5), 379-392. https://doi.org/10.12989/sss.2011.7.5.379
  15. Kim, S. and Chun, K. (2012), "2D Vibration based MEMS Energy Harvester", Proceedings of the International Conference on Renewable Energies and Power Quality, Santiago de Compostela, Spain, 28th to 30th March.
  16. Kim, S. and Na, U. (2013), "Energy harvesting techniques for remote corrosion monitoring systems", Smart Struct. Syst., 11(5), 555-567. https://doi.org/10.12989/sss.2013.11.5.555
  17. Moss, S., Barry, A., Powlesland, I., Galea, S. and Carman, G. P. (2011), "A broadband vibro-impacting power harvester with symmetrical piezoelectric bimorph-stops", Smart Mater. Struct., 20, 045013. https://doi.org/10.1088/0964-1726/20/4/045013
  18. Moss, S.D., McLeod, J.E., Powlesland, I.G. and Galea, S.C. (2012), "A bi-axial magnetoelectric vibration energy harvester", Sensor Actuat. A - Phys., 175, 165-168. https://doi.org/10.1016/j.sna.2011.12.023
  19. Nguyen, D.S., Halvorsen, E., Jensen, G.U. and Vogl, A. (2010), "Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs", J. Micromech. Microeng., 20,125009. https://doi.org/10.1088/0960-1317/20/12/125009
  20. Ramlan, R., Brennan, M.J., Mace, B.R. and Kovacic, I. (2010), "Potential benefits of a non-linear stiffness in an energy harvesting device", Nonlinear Dynam., 59, 545-558. https://doi.org/10.1007/s11071-009-9561-5
  21. Stanton, S.C., McGehee, C.C. and Mann, B.P. (2009), "Reversible hysteresis for broadband magnetopiezoelastic energy harvesting", Appl. Phys. Lett., 95, 174103.s. https://doi.org/10.1063/1.3253710
  22. Tvedt, L.G.W., Nguyen, D.S. and Halvorsen, E. (2010), "Nonlinear behavior of an electrostatic energy harvester under wide- and narrowband excitation", J. Microelectromech. S., 19 (2), 305-316. https://doi.org/10.1109/JMEMS.2009.2039017
  23. Wang, L. and Yuan, F.G. (2008), "Vibration energy harvesting by magnetostrictive material", Smart Mater. Struct., 17, 045009. https://doi.org/10.1088/0964-1726/17/4/045009
  24. Yang, J., Wen, Y.M. and Li, P. (2011), "Magnetoelectric energy harvesting from vibrations of multiple frequencies", J .Intel. Mat. Syst. Str., 22, 1631-1639. https://doi.org/10.1177/1045389X11406300
  25. Yang, J., Wen, Y.M., Li, P. and Dai, X.Z. (2011), "A magnetoelectric, broadband vibration-powered generator for intelligent sensor systems", Sensor Actuat. A - Phys., 168, 358-364. https://doi.org/10.1016/j.sna.2011.04.038
  26. Zhang, Y. and Zhu, B.H. (2012), "Analysis and simulation of multi-mode piezoelectric energy harvesters", Smart Struct. Syst., 9(6), 549. https://doi.org/10.12989/sss.2012.9.6.549
  27. Zhu, D.B., Beeby, S.P., Tudor, M.J. and Harris, N.R. (2011), "A credit card sized self powered smart sensor node", Sensor Actuat. A - Phys., 169, 317-325. https://doi.org/10.1016/j.sna.2011.01.015
  28. Zhu, Y., Moheimani, S.O.R. and Yuce, M.R. (2011), "A 2-DOF MEMS Ultrasonic Energy Harvester", IEEE Sens. J., 11(1), 155-161. https://doi.org/10.1109/JSEN.2010.2053922