DOI QR코드

DOI QR Code

Influense of the high-voltage conductivity on peculiarity of polarization ferroelectric polymer on based vinylidenefluoride

  • Kochervinskii, V.V. (Karpov Institute of Physical Chemistry) ;
  • Chubunova, E.V. (Moscow Engineering Physics Institute, National Nuclear Research University) ;
  • Lebedinskii, Y.Y. (Moscow Engineering Physics Institute, National Nuclear Research University) ;
  • Pavlov, A.S. (Karpov Institute of Physical Chemistry) ;
  • Pakuro, N.I. (Karpov Institute of Physical Chemistry)
  • Received : 2015.05.19
  • Accepted : 2015.09.15
  • Published : 2015.06.25

Abstract

The phenomena of high-voltage polarization and conductivity in oriented vinylidenefluoride and tetrafluoroethylene copolymer films have been investigated. It was shown that under certain electric fields, injection of carriers from the material of electrodes appears The barrier for holes injection in the copolymer was found to be lower than that for electrons. It results in more effective screening of the external field near the anode than near cathode. Electrones, ejected from cathode, creating negative charge by trapping on the surface. It is shown that the electrons injected from cathodes create a negative homocharge on the copolymer surface and then become captured on the surface shallow traps. Their nature has been studied by the x-ray photoelectron spectroscopy. It was shown that these traps may consist of chemical defects in the form of new functional groups formed by reactions of surface macromolecules with sputtered atoms of aluminum. The asymmetric shape of hysteresis curves was explained by the difference in mobility of injected holes and electrons. These factors caused appearance of "non-closed" hysteresis curves for fluorine-containing polymer ferroelectrics. Hysteresis phenomena observed at low electric fields (below coercive ones) are to associate with the behavior of the domains localized in the ordered regions formed during secondary crystallization of copolymers.

Keywords

References

  1. Averkiev, N.S., Zakrevskiy, V.A., Rojanskiy, I.V. and Sudar, N.T. (2009), FTT (rus) V.51, 862-868.
  2. Bihler, E., Holdik, K. and Eisenmenger, W. (1987), "Electric field-induced gas emission from PVDF films", IEEE Tran. Electr. Insul., 22(2), 207-210.
  3. Chen, G., Tay, T.Y.G., Davies, A.E., Tanaka, Y., Takada, T. (2001), "Electrodes and charge injection in low-density polyethylenes. Using the pulsed electroacoustic technique", IEEE Tran. Diel. Electr. Insul., 8(6), 867-873. https://doi.org/10.1109/94.971439
  4. Crine, J.P., Piron, D.L., Yelon, A. (1979), "Comments on Electrochemical effects as the source of electromotive force in metal(1)-polymer-metal(2)", J. Appl. Phys., 50(5), 3762-3763. https://doi.org/10.1063/1.326287
  5. Davies, D.K. (1969), "Charge generation on dielectric surfaces", Brit. J. Appl. Phys., 2, 1533.
  6. Dickens, B., Balizer, E., DeReggy, A.S. and Roth, S.C. (1992), "Hysteresis measurements of remanent polarization and coercive field in polymers", J. Appl. Phys., 72(9), 4258-4264. https://doi.org/10.1063/1.352213
  7. Fabish, T.J., Saltsburg, H.M. and Hair, M.L. (1976), "Charge transfer in metal/atactic polystyrene contacts", J. Appl. Phys., 47(3), 930-939. https://doi.org/10.1063/1.322683
  8. Felix-Vandorpe, M.C., Maitrot, M. and Ongaro, R. (1985), "Electrical properties at very low frequencies of -pvdf subjected to thermal cycling", J. Phys. D. Appl. Phys., 18, 1385-1399. https://doi.org/10.1088/0022-3727/18/7/025
  9. Fuhrmann, J., Hofmann, R., Streibel, H.J. and Jahn, U. (1986), "Electron injection at PVDF/metal interfaces", IEEE Trans. Electr. Insul., 21(3), 529-532.
  10. Furukawa, T. (1989), "Ferroelectric properties of vinylidenefluoride copolymers", Phase Trans., 18, 143-211. https://doi.org/10.1080/01411598908206863
  11. Furukawa, T., Date, M. and Fukada, E. (1980), "Hysteresis phenomena in polyvinylidene fluoride under high electric field", J. Appl. Phys., 51(2), 1135-1141. https://doi.org/10.1063/1.327723
  12. Gross, B., von Seggern, H. and Gerhard-Multhaupt, R. (1985), "Carrier mobilities in polyvinylidenefluoride", J. Phys. D. Appl. Phys., 18, 2497-2504. https://doi.org/10.1088/0022-3727/18/12/018
  13. Grzybowski, B.A., Fialkowski, M. and Wiles, J.A. (2005), "Kinetics of contact electrification between metals and polymers", J. Phys. Chem. B., 109, 20511-20515. https://doi.org/10.1021/jp053532g
  14. Guy, I.L. and Unsworth, J. (1988), "Observation of a change in the form of polarization reversal in a vinylidenefluoride/trifluoroethylene copolymer", Appl. Phys. Lett., 52(7), 532-534. https://doi.org/10.1063/1.99407
  15. Hofmann, R. and Fuhrmann, J. (1981), "Electrical field-effect of polyvinylidenefluoride (PVF2)", Colloid. Polym. Sci., 259, 280-285. https://doi.org/10.1007/BF01381774
  16. Ieda, M., Sawa, G., Nakamura, S. and Nishio, Y. (1975), "A spontaneous current from the metal(1)-polymer-metal(2)", J. Appl. Phys., 46(6), 2796-2798. https://doi.org/10.1063/1.321920
  17. Ikeda, S., Fukada, T. and Wada, Y. (1988), "Effect of space charge on polarization reversal in a copolymer of vinylidenefluoride and trifluoroethylene", J. Appl. Phys., 64(4), 2026-2030. https://doi.org/10.1063/1.341733
  18. Ionov, A.N., Popov, E.O., Svetlichnyi, V.M., Nikolaeva, M.N. and Pashkevich, A.A. (2007), "Field emission from metal-polymer construction", Surf. Interf. Anal., 39(2-3), 159-160. https://doi.org/10.1002/sia.2481
  19. Kang, S., Bae, I., Park, Y., Park, T., Sung, J., Yoon, S., Kim, K., Choi, D. and Park, C. (2009), "Non-volatile ferroelectric poly (vinylidenefluoride-co-trifluoroethylene) memory based on a single crystalline tri- isopropylsilylethynyl pentacene field-effect transistor", Adv. Funct. Mater., 19, 1609-1616 https://doi.org/10.1002/adfm.200801097
  20. Kao, K.C. and Tu, D. (2003), "Hole injection initiated by ionic conduction in electrically stressed insulating polymers", J. Appl. Polym. Sci., 90(7), 1864-1867. https://doi.org/10.1002/app.12849
  21. Kochervinskii, V.V. (1999), "Ferroelectricity of polymers based on vinylidenefluoride", Russ. Chem. Rev., 68, 821 - 857. https://doi.org/10.1070/RC1999v068n10ABEH000446
  22. Kochervinskii, V.V., Shcherbina, M.A., Bessonova, N.P., Gerasimov, V.I., Udra, S.N., Petkieva, D.V., Pavlov, A.S., Shmakova, N.A. and Kozlova, N.V. (2013), "Heterogeneous chemical crosslinking and high-voltage polarization in a ferroelectric copolymer of vinylidenefluoride and tetrafluoroethylene polymer science", Ser. A, Russia, 55(9), 540-548.
  23. Kochervinskii, V.V. (1994), "Properties and application fluorocontaining pоlymer films with piezo- and pyro-response", Russ. Chem. Rev., 63, 367-371. https://doi.org/10.1070/RC1994v063n04ABEH000090
  24. Kochervinskii, V.V. (1993), "Influence of irradiation on ferroelectric properties of the polyvinylidenefluoride", Vysokomol. Soed A., Russia, 35(12), 1978-1985.
  25. Kochervinskii, V.V., Sokolov, V.G. and Zubkov, V.M. (1991), "Effect of molecular structure on characteristics of electrical hysteresis of polyvinylidenefluoride and its copolymers", Polym. Sci. A, Russia, 33, 530- 537.
  26. Kochervinskii, V.V., Pavlov, A.S., Kozlova, N.V. and Shmakova, N.A. (2014), "Polarization of bulk textured films of ferroelectric copolymers of vinylidene fluoride with tetrafluoroethylene in an external field", Polym. Sci. A, Russia, 56(5), 587-602. https://doi.org/10.1134/S0965545X14050101
  27. Kochervinskii, V.V., Glukhov, V.A., Sokolov, V.G., Romadin, V.F., Murasheva, E.M., Ovchinnikov, Y.K., Lokshin, B.V. (1988), "Microstructure and crystallization isotropic films copolymers of the vinylidenefluoride and tetrafluroethylene", Polym. Sci. A, Russia, 30(9), 2100-2108.
  28. Kochervinskii, V.V., Kiselev, D.A., Malinkovich, M.D., Pavlov, A.S., Kozlova, N.V. and Shmakova, N.A. (2014), "Effect of the structure of a ferroelectric vinylidenefluoride-tetrafluoroethylene copolymer on the characteristics of a local piezoelectric response", Polym. Sci. A, Russia, 56(1), 48-62. https://doi.org/10.1134/S0965545X14010064
  29. Kochervinskii, V.V., Glukhov, V.A., Sokolov, V.G., Lokshin, B.V. (1989), "Influence the conditions of thermotreatment on structure cold - orientation films of the copolymer of vinylidenefluoride and tetrafluoroethylene", Polym. Sci. A, Russia, 31(2), 307-315.
  30. Kochervinskii, V.V., Chubunova, E.V., Lebedinskii, Y.Y., Shmakova, N.A., Khnykov, A.Y. (2011), "The role of new functional groups in the surface layer of LDPE during its high-voltage contact polarization", Polym. Sci., Russia, Ser. A, 53(10), 929-946. https://doi.org/10.1134/S0965545X11100063
  31. Kochervinskii, V.V., Kozlova, N.V., Khnykov, A.Y., Shcherbina M.A., Sulyanov S.N., Dembo K.A., (2010), "The features of structure formation and electrophyscal properties of polyvinylidenefluoride crystalline ferroelectric polymers", J. Appl. Polym. Sci., 116, 695-707.
  32. Kochervinskii, V., Malyshkina, I., Gavrilova, N., Sulyanov, S. and Bessonova, N. (2007), "Peculiarities of dielectric relaxation in poly(vinylidenefluoride) with different thermal history", J. Non-Crystal. Solid., 353, 4443-4447. https://doi.org/10.1016/j.jnoncrysol.2007.03.034
  33. Kochervinskii, V.V., Kozlova, N.V., Khnykov, A.Y., Shcherbina, M.A., Sulyanov, S.N. and Dembo, K.A. (2010), "The features of structure formation and electrophyscal properties of polyvinylidenefluoride crystalline ferroelectric polymers", J. Appl. Polym. Sci., 116, 695-707.
  34. Kochervinskii, V. and Malyshkina, I. (2010), "Peculiarities of high-temperature dielectric relaxation in vinylidenefluoride - hexafluoropropylene copolymers", J. Non-Crystal. Solid., 356, 564-567. https://doi.org/10.1016/j.jnoncrysol.2009.09.034
  35. Kochervinskii, V.V., Chubunova, E.V., Lebedinskii, Y.Y. and Shmakova, N.A. (2011), "Effect of electrode material on contact high_voltage polarization in a vinylidene fluoride-hexafluoropropylene copolymer", Polym. Sci. A., Russia, 53(10), 912-928. https://doi.org/10.1134/S0965545X11100051
  36. Kochervinskii, V.V. (2006), "Structural changes in ferroelectric polymers under the аction of strong electric fields by the example of polyvinylidene fluoride", Crystallogr. Reports, Russia, 51(1), S88-S107. https://doi.org/10.1134/S1063774506070157
  37. Kochervinskii, V.V., Malyshkina, I.A., Markin, G.V., Gavrilova, N.D. and Bessonova, N.P. (2007), "Dielectric relaxation in vinylidene-hexafluoropropylene copolymers", J. Appl. Polym. Sci., 105, 1101-1117. https://doi.org/10.1002/app.26145
  38. Koizumi, N., Murata, Y. and Tsunashima, H. (1986), "Polarization reversal and double hysteresis loop in copolymers of vinylidene fluoride and trifluoroethylene", Elec. Insul., IEEE Tran. on, 3, 543-548.
  39. Kolb, R., Wutz, C., Stribeck, N., von Krosigk, G. and Riekel, C. (2001), "Invesigation of secondary crystallization of polymers by means of microbeam X-ray scattering", Polym., 42, 5257-5266. https://doi.org/10.1016/S0032-3861(00)00920-4
  40. Lachinov, A.N., Cornilov, V.M., Yumaguzin, Y.M. and Tchurlina, E.E. (2004), "Electron emission from polymer films under electric-field influence", J. CID., 12(2), 149-151.
  41. Levis, T.J. and Llewellyn, J.P. (2013), "Electrical conduction in polyethylene: The role of positive charge and the formation of positive packets", J. Appl. Phys., 113., 223705: 1-12.
  42. Li, Z., Yin, Y., Wang, X., Tu, D.M. and Kao, K.C. (2003), "Formation and inhibition of free radicals in electrically stressed and aged insulating polymers", J. Appl. Polym. Sci., 89(12), 3416-3425. https://doi.org/10.1002/app.12511
  43. Meunier, M. and Quirke, N. (2000), "Molecular modeling of electron trapping in polymer insulators", J. Chem. Phys., 113(1), 369-376. https://doi.org/10.1063/1.481802
  44. Meunier, M., Quirke, N. and Aslanides, A. (2001), "Molecular modeling of electron traps in polymer insulators: chemical defects and impurities", J. Chem. Phys., 115(6), 2876-2881. https://doi.org/10.1063/1.1385160
  45. Mizutani, T., Nagata, T. and Ieda, M. (1984), "TSC due to space charge in polyvinylidenefluoride", J. Phys. D. Appl. Phys., 17, 1883-1887. https://doi.org/10.1088/0022-3727/17/9/013
  46. Murayama, N. (1975), "Persistent polarization in poly(vinylidenefluoride). I. Surface charges and piezoelectricity of poly(vinylidenefluoride) thermoelectrets", J. Polym. Sci. Poly. Phys Ed., 13, 929-946. https://doi.org/10.1002/pol.1975.180130505
  47. Murayama, N., Oikawa, T., Katto, T. and Nakamura, N. (1975), "Persistent polarization in poly (vinylidenefluoride). II. Piezoelectricity of poly(vinylidenefluoride) thermoelectrets", J. Polym. Sci. Poly. Phys. Ed., 13, 1033-1047. https://doi.org/10.1002/pol.1975.180130515
  48. Naber, R.C.G., Blom, P.W.M., Marsman, A.W. and de Leeuw, D.M. (2004), "Low voltage switching of a spin cast ferroelectric polymer", Appl. Phys. Lett., 85(11), 2032- 2034 https://doi.org/10.1063/1.1788885
  49. Nalva, H.S. (1995), Ferroelectric Polymers - Chemistry, Physics and Applications, Marcel Dekker Inc, New York.
  50. Neidhofer, M., Beaume, F., Ibos, L., Bernes, A. and Lacabanne, C. (2004), "Structural evolution of PVDF during storage or annealing", Polymer, 45(5), 1679-1688. https://doi.org/10.1016/j.polymer.2003.12.066
  51. Park, Y., Kang, S., Lotz, B., Brinkmannv, T.A., Kim, K. and Park, C. (2008), "Ordered ferroelectric PVDF-TrFE thin films by high throughput epitaxy for nonvolatile polymer memory", Macromolecules, 41, 8648-8654 https://doi.org/10.1021/ma801495k
  52. Robejko, A.L., Vajkov, V.F., Efremova, G.V., Lebedev, C.M. and Ushakov, V.Y. (1981), FTT(rus), 23(11), 3360.
  53. Rollik, D., Bauer, S. and Gerhard-Multhaupt, R. (1999), "Separate contributions to the pyroelectricity in poly(vinylidenefluoride) from the amorphous and crystalline phases, as well as from their interface", J. Appl. Phys.. 85(8), 3282-3288. https://doi.org/10.1063/1.369672
  54. von Seggern, H. and Fedosov, S.N. (2002), "Conductivity-induced polarization buildup in poly(vinylidenefluoride)", Appl. Phys. Lett., 81(15), 2830-2832. https://doi.org/10.1063/1.1512944
  55. von Seggern, H. and Fedosov, S.N. (2004), "Conductivity induced polarization in a semicrystalline ferroelectric polymer", IEEE Tran. Diel. Electr. Isul., 11(2), 232-241. https://doi.org/10.1109/TDEI.2004.1285892
  56. Sussner, H. and Dransfeld, K. (1978), "Importance of the metal-polymer interface for the piezoelectricity of polyvinylidenefluoride", J. Polym. Sci. Polym. Phys. Ed., 16, 529-543.
  57. Swaroop, N., Predecki, P. and Bharat, R. (1971), "Evidence of a negative resistance characteristic in circuit consisting of thin mylar films connected in series with high resistances", J. Appl. Phys., 42(13), 5889-5890. https://doi.org/10.1063/1.1660041
  58. Swan, D.W. (1967), "Current oscillations in iodine-doped polyethylene at high-field strengths", J. Appl. Phys., 18(13), 5058-5062.
  59. Tajitsu, Y., Masuda, T. and Furukawa, T. (1987), "Switching phenomena in vinylidene fluoride/trifluoroethylene copolymers near the Curie point", JPN J. Appl. Phys., 26(10R), 1749.
  60. Takahashi, Y., Kodama, H., Nakamura, M., Furukawa, T. and Date, M. (1999), "Antiferroelectric-like behavior of vinylidene fluoride/trifluoroethylene copolymers with low vinylidene fluoride content", Polym. J., 31(3), 263-267. https://doi.org/10.1295/polymj.31.263
  61. Takahashi, K., Lee, H., Salomon, R.E. and Labes, M.M. (1977), "Nature injection processes during poling of poly (vinylidenefluoride) and their relationship to pyroelectricity", J. Appl. Phys., 48(11), 4694-4699. https://doi.org/10.1063/1.323534
  62. Toureille, A., Notingher, P., Vella, N., Malrieu, S., Castellon, J. and Agnell, S. (1998), "Thermal step technique an advanced method for studying the properties and testing the quality of polymers", Polym. Intern., 46, 81-92 https://doi.org/10.1002/(SICI)1097-0126(199806)46:2<81::AID-PI994>3.0.CO;2-2
  63. Toureille, A. (1976), "High-field conduction and oscillations in polymers", J. Appl. Phys., 47(7), 2961-2965. https://doi.org/10.1063/1.323034
  64. Tu, N.R. and Kao, K.C. (1999), "High-field electrical conduction in polyimide films", J. Appl. Phys., 85(10), 7267-7275. https://doi.org/10.1063/1.370543
  65. Vettgren, V.I., Zakrevskiy, V.A., Smirnov, A.N. and Sudar, N.T. (2010), FTT (rus), 52, 1650-1655.
  66. Vijh, A.K. (1978), "Electrochemical effects as the source of electromotive force in metal(1)-polymer-metal(2) systems", J. Appl. Phys., 49(6), 3621-3624. https://doi.org/10.1063/1.325235
  67. Wang, Т.Т., Herbert, J.M. and Glass, A.M. (1988), The Application of Ferroelectric Polymers, Ed. Wang Т.Т., Herbert J.M., Glass A.M. Blackie, Glasgow.
  68. Wintle, H.J. (1986), "Reversals in electrical current and other anomalies in insulating polymers", IEEE Trans. Electr. Insul., 5, 747-762.
  69. Wurfel, P., Batra, I.P. and Jacobs, J.T. (1973), "Polarization instability in thin ferroelectric films", Phys. Rev. Lett., 30(24) 1218-1220. https://doi.org/10.1103/PhysRevLett.30.1218
  70. Wurfel, P. and Batra, I.P. (1973), "Depolarization-field-induced instability in thin ferroelectric films - experimental and theory", Phys. Rev. B., 8(11), 5126-5133. https://doi.org/10.1103/PhysRevB.8.5126
  71. Zakrevskiy, V.A. and Sudar, N.T. (1990), FTT (rus), 60(2), 66.
  72. Zakrevskiy, V.A. and Sudar, N.T. (1998), FTT (rus), 40(60), 1167.
  73. Zakrevskiy, V.A. and Sudar, N.T. (2013), FTT (rus), 55, 1298-1303.
  74. Zakrevskiy, V.A. and Sudar, N.T. (1992), FTT (rus), 34, 3228-3232.
  75. Zakrevskiy, V.A. and Sudar, N.T. (2005), FTT (rus), 47, 931-936.
  76. Zakrevskiy, V.A. and Slucker, A.I. (2009), FTT (rus), 51, 862-868.
  77. Zhao, J., Chen, G. and Levin, P.L. (2012), "Investigation into the formation of charge packets in polyethylene: Experiment and simulation", J. Appl. Phys., 112(3), 034116. https://doi.org/10.1063/1.4745897

Cited by

  1. An effect of the film texture on high-voltage polarization and local piezoelectric properties of the ferroelectric copolymer of vinylidene fluoride vol.296, pp.6, 2018, https://doi.org/10.1007/s00396-018-4317-8
  2. An effect of ionic liquids on polymorph transformations in polyvinylidenefluoride at its crystallization from solution vol.297, pp.10, 2015, https://doi.org/10.1007/s00396-019-04549-8