참고문헌
-
Amatucci, G.G., Tarascon, J.M. and Klein, L.C. (1996), "
$CoO_2$ , the end member of the$LixCoO_2$ solid solution", J. Electrochem. Soc., 143(3), 1114-1123. https://doi.org/10.1149/1.1836594 -
Amin, R., Balaya, P. and Maier, J. (2007), "Anisotropy of electronic and ionic transport in
$LiFePO_4$ single crystals", Electrochem. Solid. St., 10(1), A13-A16. https://doi.org/10.1149/1.2388240 -
Andersson, A.S. and Thomas, J.O. (2001), "The source of first-cycle capacity loss in
$LiFePO_4$ ", J. Power. Sources., 97-98, 498-502. https://doi.org/10.1016/S0378-7753(01)00633-4 - Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M. and Van Schalkwijk, W. (2005), "Nanostructured materials for advanced energy conversion and storage devices", Nat. Mater., 4(5), 366-377. https://doi.org/10.1038/nmat1368
- Armand, M. and Tarascon, J.M. (2008), "Building better batteries", Nature., 451(7179), 652-657. https://doi.org/10.1038/451652a
- Balbuena, P.B. and Wang, Y.X. (2004), Lithium-ion Batteries: Solid-Electrolyte Interphase, Imperial College Press, London.
- Basic research needs for electronic energy storage (2007), "Report of the basic energy sciences workshop on electronic energy storage", http://www.er.doe.gov/bes/reports/files/EES_rpt.pdf., April 2-4.
- Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A. and Evans, C.D. (2000), "Thin-film lithium and lithium-ion batteries", Solid. State. Ionics., 135(1-4), 33-45. https://doi.org/10.1016/S0167-2738(00)00327-1
-
Caballero, A., Cruz-Yusta, M., Morales, J., Santos-Pena, J. and Rodriguez-Castellon, E. (2006), "A new and fast synthesis of nanosized
$LiFePO_4$ electrode materials", Eur. J. Inorg. Chem., 9, 1758-1764. -
Chen, G.Y., Song, X.Y. and Richardson, T.J. (2006), "Electron microscopy study of the
$LiFePO_4$ to$FePO_4$ phase transition", Electrochem. Solid. St., 9(6), 295-298. https://doi.org/10.1149/1.2192695 - Chen, J., Wang, S. and Whittingham, M.S. (2007), "Hydrothermal synthesis of cathode materials", J. Power. Sources., 174(2), 442-448. https://doi.org/10.1016/j.jpowsour.2007.06.189
-
Chen, Y.K., Okada, S. and Yamaki, J. (2004), "Preparation and characterization of
$LiFePO_4$ /Ag composite for Li-ion batteries", Compos. Interface., 11(3), 277-283. https://doi.org/10.1163/1568554041526567 -
Chen, Z.H. and Dahn, J.R. (2002), "Reducing carbon in
$LiFePO_4$ /C composite electrodes to maximize specific energy, volumetric energy, and tap density", J. Electrochem. Soc., 149(9), 1184-1189. https://doi.org/10.1149/1.1498255 -
Chiu, K.F. and Chen, P.Y. (2008), "Structural evolution and electrochemical performance of
$LiFePO_4$ /C thin films deposited by ionized magnetron sputtering", Surf. Coat. Tech., 203(5-7), 872-875. https://doi.org/10.1016/j.surfcoat.2008.08.010 - Chung, S.Y., Bloking, J.T. and Chiang, Y.M. (2002), "Electronically conductive phospho-olivines as lithium storage electrodes", Nat. Mater., 1(2), 123-128. https://doi.org/10.1038/nmat732
-
Croce, F., Epifanio, A.D., Hassoun, J., Deptula, A., Olczac, T. and Scrosati, B. (2002), "A novel concept for the synthesis of an improved
$LiFePO_4$ lithium battery cathode", Electrochem. Solid. St., 5(3), 47-50. -
Delacourt, C., Poizot, P., Levasseur, S. and Masquelier, C. (2006), "Size effects on carbon-free
$LiFePO_4$ powders", Electrochem. Solid. St., 9(7), 352-355. https://doi.org/10.1149/1.2201987 -
Delmas, C., Maccario, M., Croguennec, L., Le Cras, F. and Weill, F. (2008), "Lithium deintercalation in
$LiFePO_4$ nanoparticles via a domino-cascade model", Nat. Mater., 7(8), 665-671. https://doi.org/10.1038/nmat2230 -
Doherty, C.M., Caruso, R.A., Smarsly, B.M. and Drummond, C.J. (2009), "Colloidal crystal templating to produce hierarchically porous
$LiFePO_4$ electrode materials for high power lithium ion batteries", Chem. Mater., 21(13), 2895-2903. https://doi.org/10.1021/cm900698p -
Dokko, K., Koizumi, S. and Kanamura, K. (2006), "Electrochemical reactivity of
$LiFePO_4$ prepared by hydrothermal method", Chem. Lett., 35(3), 338-339. https://doi.org/10.1246/cl.2006.338 -
Dokko, K., Koizumi, S., Nakano, H. and Kanamura, K. (2007), "Particle morphology, crystal orientation, and electrochemical reactivity of
$LiFePO_4$ synthesized by the hydrothermal method at 443 K", J. Mater. Chem., 17(45), 4803-4810. https://doi.org/10.1039/b711521k -
Dominko, R., Bele, M., Goupil, J.M., Gaberscek, M., Hanzel, D., Arcon, I. and Jamnik, J. (2007), "Wired porous cathode materials: A novel concept for synthesis of
$LiFePO_4$ ", Chem. Mater., 19(12), 2960-2969. https://doi.org/10.1021/cm062843g -
Dominko, R., Goupil, J.M., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D. and Jamnik J. (2005), "Impact of
$LiFePO_4$ /C composites porosity on their electrochemical performance", J. Electrochem. Soc., 152(5), 858-863. https://doi.org/10.1149/1.1872674 -
Ellis, B., Kan, W.H., Makahnouk, W.R.M. and Nazar, L.F. (2007), "Synthesis of nanocrystals and morphology control of hydrothermally prepared
$LiFePO_4$ ", J. Mater. Chem., 17(30), 3248-3254. https://doi.org/10.1039/b705443m -
Fisher, C.A.J. and Islam, M.S. (2008), "Surface structures and crystal morphologies of
$LiFePO_4$ : relevance to electrochemical behaviour", J. Mater. Chem., 18(11), 1209-1215. https://doi.org/10.1039/b715935h -
Franger, S., Le Cras, F., Bourbon, C. and Rouault, H. (2003), "Comparison between different
$LiFePO_4$ synthesis routes and their influence on its physico-chemical properties", J. Power. Sources., 119, 252-257. -
Gaberscek, M., Dominko, R., Bele, M., Remskar, M., Hanzel, D. and Jamnik, J. (2005), "Porous, carbon-decorated
$LiFePO_4$ prepared by sol-gel method based on citric acid", Solid. State. Ionics., 176(19-22), 1801-1805. https://doi.org/10.1016/j.ssi.2005.04.034 -
Gaberscek, M., Kuzma, M. and Jamnik, J. (2007), "Electrochemical kinetics of porous, carbondecorated
$LiFePO_4$ cathodes: separation of wiring effects from solid state diffusion", Phys. Chem. Chem. Phys., 9(15), 1815-1820. https://doi.org/10.1039/b618822b -
Gibot, P., Casas-Cabanas, M., Laffont, L., Levasseur, S., Carlach, P., Hamelet, S., Tarascon, J.M. and Masquelier, C. (2008), "Room-temperature single-phase Li insertion/extraction in nanoscale
$LixFePO_4$ ", Nat. Mater., 7(9), 741-747. https://doi.org/10.1038/nmat2245 - Goodenough, J.B. (2007), "Cathode materials: a personal perspective", J. Power. Sources., 174(2), 996-1000. https://doi.org/10.1016/j.jpowsour.2007.06.217
- Herle, P.S., Ellis, B., Coombs, N. and Nazar, L.F. (2004), "Nano-network electronic conduction in iron and nickel olivine phosphates", Nat. Mater., 3(3), 147-152. https://doi.org/10.1038/nmat1063
-
Hong, J., Wang, C.S., Dudney, N.J. and Lance, M.J. (2007), "Characterization and performance of
$LiFePO_4$ thin-film cathodes prepared with radio-frequency magnetron-sputter deposition", J. Electrochem. Soc., 154(8), A805-A809. https://doi.org/10.1149/1.2746804 -
Huang, H., Yin, S.C. and Nazar, L.F. (2001), "Approaching theoretical capacity of
$LiFePO_4$ at room temperature at high rates", Electrochem. Solid. St., 4(10), A170-A172. https://doi.org/10.1149/1.1396695 -
Huang, Y.H. and Goodenough, J.B. (2008), "High-rate
$LiFePO_4$ lithium rechargeable battery promoted by electrochemically active polymers", Chem. Mater., 20(23), 7237-7241. https://doi.org/10.1021/cm8012304 -
Huang, Y.H., Park, K.S. and Goodenough, J.B. (2006), "Improving lithium batteries by tethering carbon-coated
$LiFePO_4$ to polypyrrole", J. Electrochem. Soc., 153(12), A2282-A2286. https://doi.org/10.1149/1.2360769 -
Hu, Y.S., Guo, Y.G., Dominko, R., Gaberscek, M., Jamnik, J. and Maier, J. (2007), "Improved electrode performance of porous
$LiFePO_4$ using$RuO_2$ as an oxidic nanoscale interconnect", Adv. Mater., 19(15), 1963-1966. https://doi.org/10.1002/adma.200700697 -
Iriyama, Y., Yokoyama, M., Yada, C., Jeong, S.K., Yamada, I., Abe, T., Inaba, M. and Ogumi, Z. (2004), "Preparation of
$LiFePO_4$ thin films by pulsed laser deposition and their electrochemical properties", Electrochem. Solid. St., 7(10), 340-342. https://doi.org/10.1149/1.1795052 -
Islam, M.S., Driscoll, D.J., Fisher, C.A.J. and Slater, P.R. (2005), "Atomic-scale investigation of defects, dopants and lithium transport in the
$LiFePO_4$ olivine-type battery material", Chem. Mater., 17(20), 5085-5092. https://doi.org/10.1021/cm050999v - Kang, B. and Ceder, G. (2009), "Battery materials for ultrafast charging and discharging", Nature., 458(7235), 190-193. https://doi.org/10.1038/nature07853
-
Kobayashi, G., Nishimura, S.I., Park, M.S., Kanno, R., Yashima, M., Ida, T. and Yamada, A. (2009), "Isolation of solid solution phases in size-controlled
$LixFePO_4$ at room temperature", Adv. Funct. Mater., 19(3), 395-403. https://doi.org/10.1002/adfm.200801522 -
Laffont, L., Delacourt, C., Gibot, P., Wu, M.Y., Kooyman, P., Masquelier, C. and Tarascon, J.M. (2006), "Study of the
$LiFePO_4$ /$FePO_4$ two-phase system by high-resolution electron energy loss spectroscopy", Chem. Mater., 18(23), 5520-5529. https://doi.org/10.1021/cm0617182 -
Lee, K.T., Kan, W.H. and Nazar, L.F. (2009), "Proof of intercrystallite ionic transport in
$LiMPO_4$ electrodes (M = Fe, Mn)", J. Am. Chem. Soc., 131(17), 6044-6045. https://doi.org/10.1021/ja8090559 -
Li, C.L. and Fu, Z.W. (2007), "Kinetics of
$Li^+$ ion diffusion into$FePO_4$ and FePON thin films characterized by AC impedance spectroscopy", J. Electrochem. Soc., 154(8), 784-791. https://doi.org/10.1149/1.2746550 -
Lim, S.Y., Yoon, C.S. and Cho, J.P. (2008), "Synthesis of nanowire and hollow
$LiFePO_4$ cathodes for high-performance lithium batteries", Chem. Mater., 20(14), 4560-4564. https://doi.org/10.1021/cm8006364 -
Matsumura, T., Imanishi, N., Hirano, A., Sonoyama, N. and Takeda, Y. (2008), "Electrochemical performances for preferred oriented PLD thin-film electrodes of
$LiNi_{0.8}Co_{0.2}O_2$ ,$LiFePO_4$ and$LiMn_2O_4$ ", Solid. State. Ionics., 179(35-36), 2011-2015. https://doi.org/10.1016/j.ssi.2008.06.015 -
Meethong, N., Huang, H.Y.S., Carter, W.C. and Chiang, Y.M. (2007a), "Size-dependent lithium miscibility gap in nanoscale
$Li_{1-x}FePO_4$ ", Electrochem. Solid. St., 10(5), 134-138. - Meethong, N., Huang, H.Y.S., Speakman, S.A., Carter, W.C. and Chiang, Y.M. (2007b), "Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries", Adv. Funct. Mater., 17(7), 1115-1123. https://doi.org/10.1002/adfm.200600938
- Meethong, N., Kao, Y.H., Speakman, S.A. and Chiang, Y.M. (2009), "Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties", Adv. Funct. Mater., 19(7), 1060-1070. https://doi.org/10.1002/adfm.200801617
-
Mi, C.H., Cao, Y., Zhang, X.G., Zhao, X.B. and Li, H.L. (2008), "Synthesis and characterization of
$LiFePO_4$ /(Ag+C) composite cathodes with nano-carbon webs", Powder. Technol., 181(3), 301-306. https://doi.org/10.1016/j.powtec.2007.05.017 -
Mizushima, K., Jones, P.C., Wiseman, P.J. and Goodenough, J.B. (1980), "
$LixCoO_2$ -a new cathode material for batteries of high-energy density", Mater. Res. Bull., 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4 -
Morales, J., Santos-Pena, J., Rodriguez-Castellon, E. and Franger, S. (2007), "Antagonistic effects of copper on the electrochemical performance of
$LiFePO_4$ ", Electrochim. Acta., 53(2), 920-926. https://doi.org/10.1016/j.electacta.2007.08.001 - Morgan, D., Van der Ven, A. and Ceder, G. (2004), "Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials", Electrochem. Solid. St., 7(2), 30-32. https://doi.org/10.1149/1.1633511
-
Murugan, A.V., Muraliganth, T. and Manthiram, A. (2008), "Comparison of microwave assisted solvothermal and hydrothermal syntheses of
$LiFePO_4$ /C nanocomposite cathodes for lithium ion batteries", J. Phys. Chem. C., 112(37), 14665-14671. https://doi.org/10.1021/jp8053058 -
Nishimura, S., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M. and Yamada, A. (2008), "Experimental visualization of lithium diffusion in
$LixFePO_4$ ", Nat. Mater., 7(9), 707-711. https://doi.org/10.1038/nmat2251 - Padhi, A.K., Nanjundaswamy, K.S. and Goodenough, J.B. (1997a), "Phospho-olivines as positiveelectrode materials for rechargeable lithium batteries", J. Electrochem. Soc., 144(4), 1188-1194. https://doi.org/10.1149/1.1837571
-
Padhi, A.K., Nanjundaswamy, K.S., Masquelier, C., Okada, S. and Goodenough, J.B. (1997b), "Effect of structure on the
$Fe^{3+}/Fe^{2+}$ redox couple in iron phosphates", J. Electrochem. Soc., 144(5), 1609-1613. https://doi.org/10.1149/1.1837649 - Park, K.S., Schougaard, S.B. and Goodenough, J.B. (2007), "Conducting-polymer/iron-redoxcouple composite cathodes for lithium secondary batteries", Adv. Mater., 19(6), 848.
-
Park, K.S., Son, J.T., Chung, H.T., Kim, S.J., Lee, C.H., Kang, K.T. and Kim, H.G. (2004), "Surface modification by silver coating for improving electrochemical properties of
$LiFePO_4$ ", Solid. State. Commun., 129(5), 311-314. https://doi.org/10.1016/j.ssc.2003.10.015 - Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M. and Armand, M. (2001), "Electroactivity of natural and synthetic triphylite", J. Power. Sources., 97-98, 503-507. https://doi.org/10.1016/S0378-7753(01)00727-3
-
Recham, N., Armand, M., Laffont, L. and Tarascon, J.M. (2009a), "Eco-efficient synthesis of
$LiFePO_4$ with different morphologies for Li-ion batteries", Electrochem. Solid. St., 12(2), 39-44. -
Recham, N., Dupont, L., Courty, M., Djellab, K., Larcher, D., Armand, M. and Tarascon, J.M. (2009b), "Ionothermal synthesis of tailor-made
$LiFePO_4$ powders for Li-ion battery applications", Chem. Mater., 21(6), 1096-1107. https://doi.org/10.1021/cm803259x -
Rho, Y.H., Nazar, L.F., Perry, L. and Ryan, D. (2007), "Surface chemistry of
$LiFePO_4$ studied by mossbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties", J. Electrochem. Soc., 154(4), 283-289. -
Saravanan, K., Reddy, M.V., Balaya, P., Gong, H., Chowdari, B.V.R. and Vittal, J.J. (2009), "Storage performance of
$LiFePO_4$ nanoplates", J. Mater. Chem., 19(5), 605-610. https://doi.org/10.1039/B817242K -
Sauvage, F., Baudrin, E., Morcrette, M. and Tarascon, J.M. (2004), "Pulsed laser deposition and electrochemical properties of
$LiFePO_4$ thin films", Electrochem. Solid. St., 7(1), 15-18. -
Sauvage, F., Laffont, L., Tarascon, J.M. and Baudrin, E. (2008a), "Factors affecting the electrochemical reactivity vs. lithium of carbon-free
$LiFePO_4$ thin films", J. Power. Sources., 175(1), 495-501. https://doi.org/10.1016/j.jpowsour.2007.09.085 - Sauvage, F., Tarascon, J.M. and Baudrin, E. (2008b), "Formation of autonomous ion sensors based on ion insertion-type materials", J. Appl. Electrochem., 38(6), 803-808. https://doi.org/10.1007/s10800-008-9515-5
-
Song, S.W., Reade, R.P., Kostecki, R. and Striebel, K.A. (2006), "Electrochemical studies of the
$LiFePO_4$ thin films prepared with pulsed laser deposition", J. Electrochem. Soc., 153(1), 12-19. - Srinivasan, V. and Newman, J. (2004), "Discharge model for the lithium iron-phosphate electrode", J. Electrochem. Soc., 151(10), 1517-1529. https://doi.org/10.1149/1.1785012
-
Sun, J.P., Tang, K., Yu, X.Q., Li, H. and Huang, X.J. (2009), "Needle-like
$LiFePO_4$ thin films prepared by an off-axis pulsed laser deposition technique", Thin. Solid. Films., 517(8), 2618-2622. https://doi.org/10.1016/j.tsf.2008.10.054 - Tarascon, J.M. and Armand, M. (2001), "Issues and challenges facing rechargeable lithium batteries", Nature., 414(6861), 359-367. https://doi.org/10.1038/35104644
- Thackeray, M. (2002), "Lithium-ion batteries - An unexpected conductor", Nat. Mater., 1(2), 81-82. https://doi.org/10.1038/nmat736
- Thackeray, M.M., David, W.I.F., Bruce, P.G. and Goodenough, J.B. (1983), "Lithium insertion into manganese spinels", Mater. Res. Bull., 18(4), 461-472. https://doi.org/10.1016/0025-5408(83)90138-1
- Tollefson, J. (2008), "Car industry: Charging up the future", Nature., 456(7221), 436-440. https://doi.org/10.1038/456436a
- Wagemaker, M., Mulder, F.M. and Van der Ven, A. (2009), "The role of surface and interface energy on phase stability of nanosized insertion compounds", Adv. Mater., 21(25-26), 2703-2709. https://doi.org/10.1002/adma.200803038
- Wakihara, M. and Yamamoto, O. (1998), Lithium Ion Batteries: Fundamentals And Performance, Wiley-VCH, Tokyo, Kodansha,Weinheim, Chichester.
- Wang, G.X., Shen, X.P. and Yao, J. (2009), "One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance", J. Power. Sources., 189(1), 543-546. https://doi.org/10.1016/j.jpowsour.2008.10.044
-
Wang, J.Z., Chou, S.L., Chen, J., Chew, S.Y., Wang, G.X., Konstantinov, K., Wu, J., Dou, S.X. and Liu, H.K. (2008), "Paper-like free-standing polypyrrole and polypyrrole-
$LiFePO_4$ composite films for flexible and bendable rechargeable battery", Electrochem. Commun., 10(11), 1781-1784. https://doi.org/10.1016/j.elecom.2008.09.008 -
Wang, L., Zhou, F., Meng, Y.S. and Ceder, G. (2007), "First-principles study of surface properties of
$LiFePO_4$ : surface energy, structure, wulff shape and surface redox potential", Phys. Rev. B., 76(16), 165435. https://doi.org/10.1103/PhysRevB.76.165435 - Wang, Y. and Cao, G.Z. (2008), "Developments in nanostructured cathode materials for high performance lithium-ion batteries", Adv. Mater., 20(12), 2251-2269. https://doi.org/10.1002/adma.200702242
-
Wang, Z.L., Su, S.R., Yu, C.Y., Chen, Y. and Xia, D.G. (2008), "Synthesises, characterizations and electrochemical properties of spherical-like
$LiFePO_4$ by hydrothermal method", J. Power. Sources., 184(2), 633-636. https://doi.org/10.1016/j.jpowsour.2008.04.066 - Whittingham, M.S. (2004), "Lithium batteries and cathode materials", Chem. Rev., 104(10), 4271-4301. https://doi.org/10.1021/cr020731c
- Whittingham, M.S. (2008), "Materials challenges facing electronic energy storage", Mrs. Bull., 33(4), 411-419. https://doi.org/10.1557/mrs2008.82
- Wikipedia Encyclopedia. "Green House Gas", http://en.wikipedia.org/wiki/Greenhouse_gas.
-
Wilcox, J.D., Doeff, M.M., Marcinek, M., Kostecki, R. (2007), "Factors influencing the quality of carbon coatings on
$LiFePO_4$ ", J. Electrochem. Soc., 154(5), A389-A395. https://doi.org/10.1149/1.2667591 - Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F. and Yan, Y.Q. (2003), "One-dimensional nanostructures: synthesis, characterization, and applications", Adv. Mater., 15(5), 353-389. https://doi.org/10.1002/adma.200390087
-
Xie, H.M., Wang, R.S., Ying, J.R., Zhang, L.Y., Jalbout, A.F., Yu, H.Y., Yang, G.L., Pan, X.M. and Su, Z.M. (2006), "Optimized
$LiFePO_4$ -polyacene cathode material for lithium-ion batteries", Adv. Mater., 18(19), 2609. https://doi.org/10.1002/adma.200600578 - Xu, C.B., Lee, J. and Teja, A.S. (2008), "Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water", J. Supercrit. Fluid., 44(1), 92-97. https://doi.org/10.1016/j.supflu.2007.09.001
-
Yamada, A., Chung, S.C. and Hinokuma, K. (2001), "Optimized
$LiFePO_4$ for lithium battery cathodes", J. Electrochem. Soc., 148(3), 224-229. https://doi.org/10.1149/1.1348257 -
Yang, H., Wu, X.L., Cao, M.H. and Guo, Y.G. (2009), "Solvothermal synthesis of
$LiFePO_4$ hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in Lithium-ion batteries", J. Phys. Chem. C., 113(8), 3345-3351. https://doi.org/10.1021/jp808080t - Yang, S.F., Zavalij, P.Y. and Whittingham, M.S. (2001), "Hydrothermal synthesis of lithium iron phosphate cathodes", Electrochem. Commun., 3(9), 505-508. https://doi.org/10.1016/S1388-2481(01)00200-4