DOI QR코드

DOI QR Code

Urgency of LiFePO4 as cathode material for Li-ion batteries

  • Guo, Kelvii Wei (Department of Mechanical and Biomedical Engineering, City University of Hong Kong)
  • Received : 2015.03.05
  • Accepted : 2015.07.02
  • Published : 2015.06.25

Abstract

The energy crisis involving depletion of fossil fuel resource is not the sole driving force for developing renewable energy technologies. Another driving force is the ever increasing concerns on the air quality of our planet, associated with the continuous and dramatic increase of the concentration of greenhouse gas (mainly carbon dioxide) emissions. The internal combustion engine is a major source of distributed $CO_2$ emissions caused by combustion of gasoline derived largely from fossil fuel. Another major source of $CO_2$ is the combustion of fossil fuels to produce electricity. New technologies for generating electricity from sources that do not emit $CO_2$, such as water, solar, wind, and nuclear, together with the advent of plug-in hybrid electric vehicles (PHEV) and even all-electric vehicles (EVs), offer the potential of alleviating our present problem. Therefore, the relevant technologies in $LiFePO_4$ as cathode material for Li-ion batteries suitable to the friendly environment are reviewed aim to provide the vital information about the growing field for energies to minimize the potential environmental risks.

Keywords

References

  1. Amatucci, G.G., Tarascon, J.M. and Klein, L.C. (1996), "$CoO_2$, the end member of the $LixCoO_2$ solid solution", J. Electrochem. Soc., 143(3), 1114-1123. https://doi.org/10.1149/1.1836594
  2. Amin, R., Balaya, P. and Maier, J. (2007), "Anisotropy of electronic and ionic transport in $LiFePO_4$ single crystals", Electrochem. Solid. St., 10(1), A13-A16. https://doi.org/10.1149/1.2388240
  3. Andersson, A.S. and Thomas, J.O. (2001), "The source of first-cycle capacity loss in $LiFePO_4$", J. Power. Sources., 97-98, 498-502. https://doi.org/10.1016/S0378-7753(01)00633-4
  4. Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M. and Van Schalkwijk, W. (2005), "Nanostructured materials for advanced energy conversion and storage devices", Nat. Mater., 4(5), 366-377. https://doi.org/10.1038/nmat1368
  5. Armand, M. and Tarascon, J.M. (2008), "Building better batteries", Nature., 451(7179), 652-657. https://doi.org/10.1038/451652a
  6. Balbuena, P.B. and Wang, Y.X. (2004), Lithium-ion Batteries: Solid-Electrolyte Interphase, Imperial College Press, London.
  7. Basic research needs for electronic energy storage (2007), "Report of the basic energy sciences workshop on electronic energy storage", http://www.er.doe.gov/bes/reports/files/EES_rpt.pdf., April 2-4.
  8. Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A. and Evans, C.D. (2000), "Thin-film lithium and lithium-ion batteries", Solid. State. Ionics., 135(1-4), 33-45. https://doi.org/10.1016/S0167-2738(00)00327-1
  9. Caballero, A., Cruz-Yusta, M., Morales, J., Santos-Pena, J. and Rodriguez-Castellon, E. (2006), "A new and fast synthesis of nanosized $LiFePO_4$ electrode materials", Eur. J. Inorg. Chem., 9, 1758-1764.
  10. Chen, G.Y., Song, X.Y. and Richardson, T.J. (2006), "Electron microscopy study of the $LiFePO_4$ to $FePO_4$ phase transition", Electrochem. Solid. St., 9(6), 295-298. https://doi.org/10.1149/1.2192695
  11. Chen, J., Wang, S. and Whittingham, M.S. (2007), "Hydrothermal synthesis of cathode materials", J. Power. Sources., 174(2), 442-448. https://doi.org/10.1016/j.jpowsour.2007.06.189
  12. Chen, Y.K., Okada, S. and Yamaki, J. (2004), "Preparation and characterization of $LiFePO_4$/Ag composite for Li-ion batteries", Compos. Interface., 11(3), 277-283. https://doi.org/10.1163/1568554041526567
  13. Chen, Z.H. and Dahn, J.R. (2002), "Reducing carbon in $LiFePO_4$/C composite electrodes to maximize specific energy, volumetric energy, and tap density", J. Electrochem. Soc., 149(9), 1184-1189. https://doi.org/10.1149/1.1498255
  14. Chiu, K.F. and Chen, P.Y. (2008), "Structural evolution and electrochemical performance of $LiFePO_4$/C thin films deposited by ionized magnetron sputtering", Surf. Coat. Tech., 203(5-7), 872-875. https://doi.org/10.1016/j.surfcoat.2008.08.010
  15. Chung, S.Y., Bloking, J.T. and Chiang, Y.M. (2002), "Electronically conductive phospho-olivines as lithium storage electrodes", Nat. Mater., 1(2), 123-128. https://doi.org/10.1038/nmat732
  16. Croce, F., Epifanio, A.D., Hassoun, J., Deptula, A., Olczac, T. and Scrosati, B. (2002), "A novel concept for the synthesis of an improved $LiFePO_4$ lithium battery cathode", Electrochem. Solid. St., 5(3), 47-50.
  17. Delacourt, C., Poizot, P., Levasseur, S. and Masquelier, C. (2006), "Size effects on carbon-free $LiFePO_4$ powders", Electrochem. Solid. St., 9(7), 352-355. https://doi.org/10.1149/1.2201987
  18. Delmas, C., Maccario, M., Croguennec, L., Le Cras, F. and Weill, F. (2008), "Lithium deintercalation in $LiFePO_4$ nanoparticles via a domino-cascade model", Nat. Mater., 7(8), 665-671. https://doi.org/10.1038/nmat2230
  19. Doherty, C.M., Caruso, R.A., Smarsly, B.M. and Drummond, C.J. (2009), "Colloidal crystal templating to produce hierarchically porous $LiFePO_4$ electrode materials for high power lithium ion batteries", Chem. Mater., 21(13), 2895-2903. https://doi.org/10.1021/cm900698p
  20. Dokko, K., Koizumi, S. and Kanamura, K. (2006), "Electrochemical reactivity of $LiFePO_4$ prepared by hydrothermal method", Chem. Lett., 35(3), 338-339. https://doi.org/10.1246/cl.2006.338
  21. Dokko, K., Koizumi, S., Nakano, H. and Kanamura, K. (2007), "Particle morphology, crystal orientation, and electrochemical reactivity of $LiFePO_4$ synthesized by the hydrothermal method at 443 K", J. Mater. Chem., 17(45), 4803-4810. https://doi.org/10.1039/b711521k
  22. Dominko, R., Bele, M., Goupil, J.M., Gaberscek, M., Hanzel, D., Arcon, I. and Jamnik, J. (2007), "Wired porous cathode materials: A novel concept for synthesis of $LiFePO_4$", Chem. Mater., 19(12), 2960-2969. https://doi.org/10.1021/cm062843g
  23. Dominko, R., Goupil, J.M., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D. and Jamnik J. (2005), "Impact of $LiFePO_4$/C composites porosity on their electrochemical performance", J. Electrochem. Soc., 152(5), 858-863. https://doi.org/10.1149/1.1872674
  24. Ellis, B., Kan, W.H., Makahnouk, W.R.M. and Nazar, L.F. (2007), "Synthesis of nanocrystals and morphology control of hydrothermally prepared $LiFePO_4$", J. Mater. Chem., 17(30), 3248-3254. https://doi.org/10.1039/b705443m
  25. Fisher, C.A.J. and Islam, M.S. (2008), "Surface structures and crystal morphologies of $LiFePO_4$: relevance to electrochemical behaviour", J. Mater. Chem., 18(11), 1209-1215. https://doi.org/10.1039/b715935h
  26. Franger, S., Le Cras, F., Bourbon, C. and Rouault, H. (2003), "Comparison between different $LiFePO_4$ synthesis routes and their influence on its physico-chemical properties", J. Power. Sources., 119, 252-257.
  27. Gaberscek, M., Dominko, R., Bele, M., Remskar, M., Hanzel, D. and Jamnik, J. (2005), "Porous, carbon-decorated $LiFePO_4$ prepared by sol-gel method based on citric acid", Solid. State. Ionics., 176(19-22), 1801-1805. https://doi.org/10.1016/j.ssi.2005.04.034
  28. Gaberscek, M., Kuzma, M. and Jamnik, J. (2007), "Electrochemical kinetics of porous, carbondecorated $LiFePO_4$ cathodes: separation of wiring effects from solid state diffusion", Phys. Chem. Chem. Phys., 9(15), 1815-1820. https://doi.org/10.1039/b618822b
  29. Gibot, P., Casas-Cabanas, M., Laffont, L., Levasseur, S., Carlach, P., Hamelet, S., Tarascon, J.M. and Masquelier, C. (2008), "Room-temperature single-phase Li insertion/extraction in nanoscale $LixFePO_4$", Nat. Mater., 7(9), 741-747. https://doi.org/10.1038/nmat2245
  30. Goodenough, J.B. (2007), "Cathode materials: a personal perspective", J. Power. Sources., 174(2), 996-1000. https://doi.org/10.1016/j.jpowsour.2007.06.217
  31. Herle, P.S., Ellis, B., Coombs, N. and Nazar, L.F. (2004), "Nano-network electronic conduction in iron and nickel olivine phosphates", Nat. Mater., 3(3), 147-152. https://doi.org/10.1038/nmat1063
  32. Hong, J., Wang, C.S., Dudney, N.J. and Lance, M.J. (2007), "Characterization and performance of $LiFePO_4$ thin-film cathodes prepared with radio-frequency magnetron-sputter deposition", J. Electrochem. Soc., 154(8), A805-A809. https://doi.org/10.1149/1.2746804
  33. Huang, H., Yin, S.C. and Nazar, L.F. (2001), "Approaching theoretical capacity of $LiFePO_4$ at room temperature at high rates", Electrochem. Solid. St., 4(10), A170-A172. https://doi.org/10.1149/1.1396695
  34. Huang, Y.H. and Goodenough, J.B. (2008), "High-rate $LiFePO_4$ lithium rechargeable battery promoted by electrochemically active polymers", Chem. Mater., 20(23), 7237-7241. https://doi.org/10.1021/cm8012304
  35. Huang, Y.H., Park, K.S. and Goodenough, J.B. (2006), "Improving lithium batteries by tethering carbon-coated $LiFePO_4$ to polypyrrole", J. Electrochem. Soc., 153(12), A2282-A2286. https://doi.org/10.1149/1.2360769
  36. Hu, Y.S., Guo, Y.G., Dominko, R., Gaberscek, M., Jamnik, J. and Maier, J. (2007), "Improved electrode performance of porous $LiFePO_4$ using $RuO_2$ as an oxidic nanoscale interconnect", Adv. Mater., 19(15), 1963-1966. https://doi.org/10.1002/adma.200700697
  37. Iriyama, Y., Yokoyama, M., Yada, C., Jeong, S.K., Yamada, I., Abe, T., Inaba, M. and Ogumi, Z. (2004), "Preparation of $LiFePO_4$ thin films by pulsed laser deposition and their electrochemical properties", Electrochem. Solid. St., 7(10), 340-342. https://doi.org/10.1149/1.1795052
  38. Islam, M.S., Driscoll, D.J., Fisher, C.A.J. and Slater, P.R. (2005), "Atomic-scale investigation of defects, dopants and lithium transport in the $LiFePO_4$ olivine-type battery material", Chem. Mater., 17(20), 5085-5092. https://doi.org/10.1021/cm050999v
  39. Kang, B. and Ceder, G. (2009), "Battery materials for ultrafast charging and discharging", Nature., 458(7235), 190-193. https://doi.org/10.1038/nature07853
  40. Kobayashi, G., Nishimura, S.I., Park, M.S., Kanno, R., Yashima, M., Ida, T. and Yamada, A. (2009), "Isolation of solid solution phases in size-controlled $LixFePO_4$ at room temperature", Adv. Funct. Mater., 19(3), 395-403. https://doi.org/10.1002/adfm.200801522
  41. Laffont, L., Delacourt, C., Gibot, P., Wu, M.Y., Kooyman, P., Masquelier, C. and Tarascon, J.M. (2006), "Study of the $LiFePO_4$/$FePO_4$ two-phase system by high-resolution electron energy loss spectroscopy", Chem. Mater., 18(23), 5520-5529. https://doi.org/10.1021/cm0617182
  42. Lee, K.T., Kan, W.H. and Nazar, L.F. (2009), "Proof of intercrystallite ionic transport in $LiMPO_4$ electrodes (M = Fe, Mn)", J. Am. Chem. Soc., 131(17), 6044-6045. https://doi.org/10.1021/ja8090559
  43. Li, C.L. and Fu, Z.W. (2007), "Kinetics of $Li^+$ ion diffusion into $FePO_4$ and FePON thin films characterized by AC impedance spectroscopy", J. Electrochem. Soc., 154(8), 784-791. https://doi.org/10.1149/1.2746550
  44. Lim, S.Y., Yoon, C.S. and Cho, J.P. (2008), "Synthesis of nanowire and hollow $LiFePO_4$ cathodes for high-performance lithium batteries", Chem. Mater., 20(14), 4560-4564. https://doi.org/10.1021/cm8006364
  45. Matsumura, T., Imanishi, N., Hirano, A., Sonoyama, N. and Takeda, Y. (2008), "Electrochemical performances for preferred oriented PLD thin-film electrodes of $LiNi_{0.8}Co_{0.2}O_2$, $LiFePO_4$ and $LiMn_2O_4$", Solid. State. Ionics., 179(35-36), 2011-2015. https://doi.org/10.1016/j.ssi.2008.06.015
  46. Meethong, N., Huang, H.Y.S., Carter, W.C. and Chiang, Y.M. (2007a), "Size-dependent lithium miscibility gap in nanoscale $Li_{1-x}FePO_4$", Electrochem. Solid. St., 10(5), 134-138.
  47. Meethong, N., Huang, H.Y.S., Speakman, S.A., Carter, W.C. and Chiang, Y.M. (2007b), "Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries", Adv. Funct. Mater., 17(7), 1115-1123. https://doi.org/10.1002/adfm.200600938
  48. Meethong, N., Kao, Y.H., Speakman, S.A. and Chiang, Y.M. (2009), "Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties", Adv. Funct. Mater., 19(7), 1060-1070. https://doi.org/10.1002/adfm.200801617
  49. Mi, C.H., Cao, Y., Zhang, X.G., Zhao, X.B. and Li, H.L. (2008), "Synthesis and characterization of $LiFePO_4$/(Ag+C) composite cathodes with nano-carbon webs", Powder. Technol., 181(3), 301-306. https://doi.org/10.1016/j.powtec.2007.05.017
  50. Mizushima, K., Jones, P.C., Wiseman, P.J. and Goodenough, J.B. (1980), "$LixCoO_2$-a new cathode material for batteries of high-energy density", Mater. Res. Bull., 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
  51. Morales, J., Santos-Pena, J., Rodriguez-Castellon, E. and Franger, S. (2007), "Antagonistic effects of copper on the electrochemical performance of $LiFePO_4$", Electrochim. Acta., 53(2), 920-926. https://doi.org/10.1016/j.electacta.2007.08.001
  52. Morgan, D., Van der Ven, A. and Ceder, G. (2004), "Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials", Electrochem. Solid. St., 7(2), 30-32. https://doi.org/10.1149/1.1633511
  53. Murugan, A.V., Muraliganth, T. and Manthiram, A. (2008), "Comparison of microwave assisted solvothermal and hydrothermal syntheses of $LiFePO_4$/C nanocomposite cathodes for lithium ion batteries", J. Phys. Chem. C., 112(37), 14665-14671. https://doi.org/10.1021/jp8053058
  54. Nishimura, S., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M. and Yamada, A. (2008), "Experimental visualization of lithium diffusion in $LixFePO_4$", Nat. Mater., 7(9), 707-711. https://doi.org/10.1038/nmat2251
  55. Padhi, A.K., Nanjundaswamy, K.S. and Goodenough, J.B. (1997a), "Phospho-olivines as positiveelectrode materials for rechargeable lithium batteries", J. Electrochem. Soc., 144(4), 1188-1194. https://doi.org/10.1149/1.1837571
  56. Padhi, A.K., Nanjundaswamy, K.S., Masquelier, C., Okada, S. and Goodenough, J.B. (1997b), "Effect of structure on the $Fe^{3+}/Fe^{2+}$ redox couple in iron phosphates", J. Electrochem. Soc., 144(5), 1609-1613. https://doi.org/10.1149/1.1837649
  57. Park, K.S., Schougaard, S.B. and Goodenough, J.B. (2007), "Conducting-polymer/iron-redoxcouple composite cathodes for lithium secondary batteries", Adv. Mater., 19(6), 848.
  58. Park, K.S., Son, J.T., Chung, H.T., Kim, S.J., Lee, C.H., Kang, K.T. and Kim, H.G. (2004), "Surface modification by silver coating for improving electrochemical properties of $LiFePO_4$", Solid. State. Commun., 129(5), 311-314. https://doi.org/10.1016/j.ssc.2003.10.015
  59. Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M. and Armand, M. (2001), "Electroactivity of natural and synthetic triphylite", J. Power. Sources., 97-98, 503-507. https://doi.org/10.1016/S0378-7753(01)00727-3
  60. Recham, N., Armand, M., Laffont, L. and Tarascon, J.M. (2009a), "Eco-efficient synthesis of $LiFePO_4$ with different morphologies for Li-ion batteries", Electrochem. Solid. St., 12(2), 39-44.
  61. Recham, N., Dupont, L., Courty, M., Djellab, K., Larcher, D., Armand, M. and Tarascon, J.M. (2009b), "Ionothermal synthesis of tailor-made $LiFePO_4$ powders for Li-ion battery applications", Chem. Mater., 21(6), 1096-1107. https://doi.org/10.1021/cm803259x
  62. Rho, Y.H., Nazar, L.F., Perry, L. and Ryan, D. (2007), "Surface chemistry of $LiFePO_4$ studied by mossbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties", J. Electrochem. Soc., 154(4), 283-289.
  63. Saravanan, K., Reddy, M.V., Balaya, P., Gong, H., Chowdari, B.V.R. and Vittal, J.J. (2009), "Storage performance of $LiFePO_4$ nanoplates", J. Mater. Chem., 19(5), 605-610. https://doi.org/10.1039/B817242K
  64. Sauvage, F., Baudrin, E., Morcrette, M. and Tarascon, J.M. (2004), "Pulsed laser deposition and electrochemical properties of $LiFePO_4$ thin films", Electrochem. Solid. St., 7(1), 15-18.
  65. Sauvage, F., Laffont, L., Tarascon, J.M. and Baudrin, E. (2008a), "Factors affecting the electrochemical reactivity vs. lithium of carbon-free $LiFePO_4$ thin films", J. Power. Sources., 175(1), 495-501. https://doi.org/10.1016/j.jpowsour.2007.09.085
  66. Sauvage, F., Tarascon, J.M. and Baudrin, E. (2008b), "Formation of autonomous ion sensors based on ion insertion-type materials", J. Appl. Electrochem., 38(6), 803-808. https://doi.org/10.1007/s10800-008-9515-5
  67. Song, S.W., Reade, R.P., Kostecki, R. and Striebel, K.A. (2006), "Electrochemical studies of the $LiFePO_4$ thin films prepared with pulsed laser deposition", J. Electrochem. Soc., 153(1), 12-19.
  68. Srinivasan, V. and Newman, J. (2004), "Discharge model for the lithium iron-phosphate electrode", J. Electrochem. Soc., 151(10), 1517-1529. https://doi.org/10.1149/1.1785012
  69. Sun, J.P., Tang, K., Yu, X.Q., Li, H. and Huang, X.J. (2009), "Needle-like $LiFePO_4$ thin films prepared by an off-axis pulsed laser deposition technique", Thin. Solid. Films., 517(8), 2618-2622. https://doi.org/10.1016/j.tsf.2008.10.054
  70. Tarascon, J.M. and Armand, M. (2001), "Issues and challenges facing rechargeable lithium batteries", Nature., 414(6861), 359-367. https://doi.org/10.1038/35104644
  71. Thackeray, M. (2002), "Lithium-ion batteries - An unexpected conductor", Nat. Mater., 1(2), 81-82. https://doi.org/10.1038/nmat736
  72. Thackeray, M.M., David, W.I.F., Bruce, P.G. and Goodenough, J.B. (1983), "Lithium insertion into manganese spinels", Mater. Res. Bull., 18(4), 461-472. https://doi.org/10.1016/0025-5408(83)90138-1
  73. Tollefson, J. (2008), "Car industry: Charging up the future", Nature., 456(7221), 436-440. https://doi.org/10.1038/456436a
  74. Wagemaker, M., Mulder, F.M. and Van der Ven, A. (2009), "The role of surface and interface energy on phase stability of nanosized insertion compounds", Adv. Mater., 21(25-26), 2703-2709. https://doi.org/10.1002/adma.200803038
  75. Wakihara, M. and Yamamoto, O. (1998), Lithium Ion Batteries: Fundamentals And Performance, Wiley-VCH, Tokyo, Kodansha,Weinheim, Chichester.
  76. Wang, G.X., Shen, X.P. and Yao, J. (2009), "One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance", J. Power. Sources., 189(1), 543-546. https://doi.org/10.1016/j.jpowsour.2008.10.044
  77. Wang, J.Z., Chou, S.L., Chen, J., Chew, S.Y., Wang, G.X., Konstantinov, K., Wu, J., Dou, S.X. and Liu, H.K. (2008), "Paper-like free-standing polypyrrole and polypyrrole-$LiFePO_4$ composite films for flexible and bendable rechargeable battery", Electrochem. Commun., 10(11), 1781-1784. https://doi.org/10.1016/j.elecom.2008.09.008
  78. Wang, L., Zhou, F., Meng, Y.S. and Ceder, G. (2007), "First-principles study of surface properties of $LiFePO_4$: surface energy, structure, wulff shape and surface redox potential", Phys. Rev. B., 76(16), 165435. https://doi.org/10.1103/PhysRevB.76.165435
  79. Wang, Y. and Cao, G.Z. (2008), "Developments in nanostructured cathode materials for high performance lithium-ion batteries", Adv. Mater., 20(12), 2251-2269. https://doi.org/10.1002/adma.200702242
  80. Wang, Z.L., Su, S.R., Yu, C.Y., Chen, Y. and Xia, D.G. (2008), "Synthesises, characterizations and electrochemical properties of spherical-like $LiFePO_4$ by hydrothermal method", J. Power. Sources., 184(2), 633-636. https://doi.org/10.1016/j.jpowsour.2008.04.066
  81. Whittingham, M.S. (2004), "Lithium batteries and cathode materials", Chem. Rev., 104(10), 4271-4301. https://doi.org/10.1021/cr020731c
  82. Whittingham, M.S. (2008), "Materials challenges facing electronic energy storage", Mrs. Bull., 33(4), 411-419. https://doi.org/10.1557/mrs2008.82
  83. Wikipedia Encyclopedia. "Green House Gas", http://en.wikipedia.org/wiki/Greenhouse_gas.
  84. Wilcox, J.D., Doeff, M.M., Marcinek, M., Kostecki, R. (2007), "Factors influencing the quality of carbon coatings on $LiFePO_4$", J. Electrochem. Soc., 154(5), A389-A395. https://doi.org/10.1149/1.2667591
  85. Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F. and Yan, Y.Q. (2003), "One-dimensional nanostructures: synthesis, characterization, and applications", Adv. Mater., 15(5), 353-389. https://doi.org/10.1002/adma.200390087
  86. Xie, H.M., Wang, R.S., Ying, J.R., Zhang, L.Y., Jalbout, A.F., Yu, H.Y., Yang, G.L., Pan, X.M. and Su, Z.M. (2006), "Optimized $LiFePO_4$-polyacene cathode material for lithium-ion batteries", Adv. Mater., 18(19), 2609. https://doi.org/10.1002/adma.200600578
  87. Xu, C.B., Lee, J. and Teja, A.S. (2008), "Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water", J. Supercrit. Fluid., 44(1), 92-97. https://doi.org/10.1016/j.supflu.2007.09.001
  88. Yamada, A., Chung, S.C. and Hinokuma, K. (2001), "Optimized $LiFePO_4$ for lithium battery cathodes", J. Electrochem. Soc., 148(3), 224-229. https://doi.org/10.1149/1.1348257
  89. Yang, H., Wu, X.L., Cao, M.H. and Guo, Y.G. (2009), "Solvothermal synthesis of $LiFePO_4$ hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in Lithium-ion batteries", J. Phys. Chem. C., 113(8), 3345-3351. https://doi.org/10.1021/jp808080t
  90. Yang, S.F., Zavalij, P.Y. and Whittingham, M.S. (2001), "Hydrothermal synthesis of lithium iron phosphate cathodes", Electrochem. Commun., 3(9), 505-508. https://doi.org/10.1016/S1388-2481(01)00200-4