References
- Boretti, A. A., Lisbona, M. G. and Nebuloni, P. (1991a), "Numerical modelling of three-dimensional flows within the cylinder of a 4 valve spark ignition engine", INRIA/SIAM Fourth International Conference on Numerical Combustion, St. Petersburg Beach, Florida, USA, December.
- Boretti, A. A., Lisbona, M. G. and Nebuloni, P. (1991b), "Numerical modelling of three-dimensional flows within the cylinder of a direct injection diesel engine", INRIA/SIAM Fourth International Conference on Numerical Combustion, St. Petersburg Beach, Florida, USA, December.
- Boretti, A., Lisbona, M. G., Nebuloni, P. and Bland, R. (1992a), "Spark-ignition engine combustion chamber design with three-dimensional flow computations", ATA Third International Conference Innovation and Reliability in Automotive Design and Testing, Florence, Italy, April.
- Boretti, A. et al. (1992b), "Diesel engine combustion chamber design with three dimensional flow computations", IMechE Conference on Combustion in Engines, London, UK, December.
- Boretti, A., Brear, M. and Watson, H. (2007), "Experimental and numerical study of a hydrogen fuelled I. C. engine fitted with the hydrogen assisted jet Ignition system", Proceedings of the Sixteenth Australasian Fluid Mechanics Conference, Gold Coast, Australia, December
- Boretti, A. A. and Watson, H. C. (2009a), "Enhanced combustion by jet ignition in a turbocharged cryogenic port fuel injected hydrogen engine", Int. J. Hydro. Energy, 34(5), 2511-2516. https://doi.org/10.1016/j.ijhydene.2008.12.089
- Boretti, A. A. and Watson, H. C. (2009b), "The lean burn direct injection jet ignition gas engine", Int. J. Hydro. Energy, 34(18), 7835-7841. https://doi.org/10.1016/j.ijhydene.2009.07.022
- Boretti, A. (2010a), "Comparison of fuel economies of high efficiency diesel and hydrogen engines powering a compact car with a flywheel based kinetic energy recovery systems", Int. J. Hydro. Energy, 35(16), 8417-8424. https://doi.org/10.1016/j.ijhydene.2010.05.031
- Boretti A. (2010b), "Modelling auto ignition of hydrogen in a jet ignition pre-chamber", Int. J. Hydro. Energy, 35(8), 3881-3890. https://doi.org/10.1016/j.ijhydene.2010.01.114
- Boretti, A., Watson, H. and Tempia, A. (2010), "Computational analysis of the lean-burn direct-injection jet ignition hydrogen engine", Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224(2), 261-269. https://doi.org/10.1243/09544070JAUTO1278
- Boretti, A. (2011a), "Stoichiometric H2ICEs with water injection", Int. J. Hydro. Energy, 36(7), 4469-4473. https://doi.org/10.1016/j.ijhydene.2010.11.117
- Boretti, A. (2011b), "Stoichiometric H2ICE with water injection and exhaust and coolant heat recovery through organic Rankine cycles", Int. J. Hydro. Energy, 36(19), 12591-12600. https://doi.org/10.1016/j.ijhydene.2011.06.124
- Boretti, A., Jiang, S. and Scalzo, J. (2015), "A novel Wankel engine featuring jet ignition and port or direct injection for faster and more complete combustion especially designedfor gaseous fuels", SAE P. 2015-01-0007.
- Danieli, G., Ferguson, C., Heywood, J. and Keck, J. (1974), "Predicting the emissions and performance characteristics of a Wankel engine", SAE P. 740186.
- Heyne, S., Millot, G. and Favrat, D. (2011), "Numerical simulations of a prechamber autoignition engine operating on natural gas", Int. J. Thermodyn., 14(2), 43-50.
- Izweik, H. T. (2009), "CFD investigation of mixture formation, flow and combustion for multi-fuel rotary engine", d-nb. info/1001122860/34.
- Jones, C. (1979), "A review of curtiss-wright rotary engine developments with respect to general aviation potential", SAE P. 790621.
- Lehtiniemi, H. (2007), "Efficient engine CFD with detailed chemistry", ERC 2007 Symposium Future Fuels for IC Engines, Madison, June.
- Ohkubo, M., Tashima, S., Shimizu, R., Fuse, S. and Ebino, H. (2004), "Developed technologies of the new rotary engine (RENESIS)", No. 2004-01-1790, SAE Technical Paper.
- Roethlisberger, R. P. and Favrat, D. (2002a), "Comparison between direct and indirect (prechamber) spark ignition in the case of a cogeneration natural gas engine, part I: engine geometrical parameters", Appl. Therm. Eng., 22(11), 1217-1229. https://doi.org/10.1016/S1359-4311(02)00040-6
- Roethlisberger, R. P. and Favrat, D. (2002b), "Comparison between direct and indirect (prechamber) spark ignition in the case of a cogeneration natural gas engine, part II: engine operating parameters and turbocharger characteristics", Appl. Therm. Eng., 22(11), 1231-1243. https://doi.org/10.1016/S1359-4311(02)00041-8
- Sherman, D. (2008), "The rotary club", Autom. Mag., February, 76-79.
- Shimizu, R., Okimoto, H., Tashima, S. and Fuse, S. (1995), "The characteristics of fuel consumption and exhaust emissions of the side exhaust port rotary engine", SAE P. 950454.
- Yamamoto, K., Muroki, T. and Kobayakawa, T. (1972), "Combustion characteristics of rotary engines", SAE P. 720357.
- www.altronicinc.com/pdf/ignitionaccessories/PPCSP6-12.pdf
- www.cd-adapco.com/products/star-ccm-plus
- www.cd-adapco.com/sites/default/files/brochure/pdf/8017.pdf
- www.cd-adapco.com/sites/default/files/Presentation/DARS.pdf
- www.gtisoft.com/
- www.mazda.com/stories/rotary/hre/about
- www.rotronuav.com/engines
- www.cd-adapco.com/ja/printpdf/5946
Cited by
- Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives vol.177, 2017, https://doi.org/10.1088/1757-899X/177/1/012076
- First tests of laser ignition in Wankel engine vol.1787, pp.1, 2015, https://doi.org/10.1088/1742-6596/1787/1/012031
- Use of phased supply of hydrogen additives for improvement of the ecological characteristics of the Wankel rotary engine vol.1155, pp.1, 2015, https://doi.org/10.1088/1757-899x/1155/1/012077