DOI QR코드

DOI QR Code

Expression and Purification of the Helicase-like Subdomains, H1 and H23, of Reverse Gyrase from A. fulgidus for Heteronuclear NMR study

  • Kwon, Mun-Young (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Seo, Yeo-Jin (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Lee, Yeon-Mi (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Lee, Ae-Ree (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Lee, Joon-Hwa (Department of Chemistry and RINS, Gyeongsang National University)
  • Received : 2015.08.08
  • Accepted : 2015.08.25
  • Published : 2015.10.10

Abstract

Reverse gyrase is a hyperthermophile specific protein which introduces positive supercoils into DNA molecules. Reverse gyrase consists of an N-terminal helicase-like domain and a C-terminal topoisomerase domain. The helicase-like domain shares the three-dimensional structure with two tandem RecA-folds (H1 and H2), in which the subdomain H2 is interrupted by the latch domain (H3). To understand the physical property of the hyperthermophile-specific protein, two subdomains af_H1 and af_H23 have been cloned into E. coli expression vector, pET28a. The $^{15}N$-labeled af_H1 and af_H23 proteins were expressed and purified for heteronuclear NMR study. The af_H1 protein exhibits the well-dispersion of amide signals in its $^1H/^{15}N$-HSQC spectra and thus further NMR study continues to be progressed.

Keywords

References

  1. C. De La Tour, C. Portemer, R. Huber, P. Forterre, and M. Duguet, J. Bacteriol. 173, 3921 (1991) https://doi.org/10.1128/jb.173.12.3921-3923.1991
  2. M. Heine and S. B. C. Chandra, J.Microbiol. 47, 229 (2009) https://doi.org/10.1007/s12275-009-0019-8
  3. G. Perugino, A. Valenti, A. D'Amaro, M. Rossi, and M. Ciaramella, Biochem. Soc. Trans. 37, 69 (2009) https://doi.org/10.1042/BST0370069
  4. M. Nadal, Biochimie 89, 447 (2007) https://doi.org/10.1016/j.biochi.2006.12.010
  5. Y. del Toro Duany, S. P. Jungblut, A. S. Schmidt, and D. Klostermeier, Nucleic Acids Res. 36, 5882 (2008) https://doi.org/10.1093/nar/gkn587
  6. A. C. Rodriguez and D. Stock, EMBO J. 21, 418 (2002) https://doi.org/10.1093/emboj/21.3.418
  7. B. Theissen, A. R. Karow, J. Kohler, A. Gubaev, and D. Klostermeier, Proc. Natl. Acad. Sci. USA 105, 548 (2008) https://doi.org/10.1073/pnas.0705488105
  8. T. S. Hsieh and J. L. Plank J. Biol. Chem. 281, 5640 (2006) https://doi.org/10.1074/jbc.M513252200
  9. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR 6, 277 (1995)
  10. T. D. Goddard and D. G. Kneller, SPARKY 3. University of California, San Francisco, CA. (2003)
  11. J.-Y. Suh, T.- K. Yu, Y.- J. Yun, and K. O. Lee, J. Korean Magn. Reson. Soc. 18, 1 (2014)
  12. S. J. Park, J. Korean Magn. Reson. Soc. 18, 47 (2014) https://doi.org/10.6564/JKMRS.2014.18.2.047

Cited by

  1. Expression, Purification and Characterization of the BLM binding region of human Fanconi Anemia Group J Protein vol.20, pp.1, 2016, https://doi.org/10.6564/JKMRS.2016.20.1.022