DOI QR코드

DOI QR Code

Impact of glycosylation on the unimpaired functions of the sperm

  • Cheon, Yong-Pil (Division of Developmental Biology and Physiology, School of Biosciences and Chemistry, Sungshin Women's University) ;
  • Kim, Chung-Hoon (Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Asan Medical Center, College of Medicine, University of Ulsan)
  • Received : 2015.09.08
  • Accepted : 2015.09.20
  • Published : 2015.09.30

Abstract

One of the key factors of early development is the specification of competence between the oocyte and the sperm, which occurs during gametogenesis. However, the starting point, growth, and maturation for acquiring competence during spermatogenesis and oogenesis in mammals are very different. Spermatogenesis includes spermiogenesis, but such a metamorphosis is not observed during oogenesis. Glycosylation, a ubiquitous modification, is a preliminary requisite for distribution of the structural and functional components of spermatids for metamorphosis. In addition, glycosylation using epididymal or female genital secretory glycans is an important process for the sperm maturation, the acquisition of the potential for fertilization, and the acceleration of early embryo development. However, nonemzymatic unexpected covalent bonding of a carbohydrate and malglycosylation can result in falling fertility rates as shown in the diabetic male. So far, glycosylation during spermatogenesis and the dynamics of the plasma membrane in the process of capacitation and fertilization have been evaluated, and a powerful role of glycosylation in spermatogenesis and early development is also suggested by structural bioinformatics, functional genomics, and functional proteomics. Further understanding of glycosylation is needed to provide a better understanding of fertilization and embryo development and for the development of new diagnostic and therapeutic tools for infertility.

Keywords

References

  1. Li F, Li C, Wang M, Webb GI, Zhang Y, Whisstock JC, et al. Glyco-Mine: a machine learning-based approach for predicting N-, Cand O-linked glycosylation in the human proteome. Bioinformatics 2015;31:1411-9. https://doi.org/10.1093/bioinformatics/btu852
  2. Flesch FM, Gadella BM. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim Biophys Acta 2000;1469:197-235. https://doi.org/10.1016/S0304-4157(00)00018-6
  3. Mazola Y, Chinea G, Musacchio A. Integrating bioinformatics tools to handle glycosylation. PLoS Comput Biol 2011;7: e1002285. https://doi.org/10.1371/journal.pcbi.1002285
  4. Nomikos M, Swann K, Lai FA. Starting a new life: sperm PLC-zeta mobilizes the Ca2+ signal that induces egg activation and embryo development: an essential phospholipase C with implications for male infertility. Bioessays 2012;34:126-34. https://doi.org/10.1002/bies.201100127
  5. Swann K. A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development 1990;110:1295-302.
  6. Liu F, Wang H, Li J. An integrated bioinformatics analysis of mouse testis protein profiles with new understanding. BMB Rep 2011;44:347-51. https://doi.org/10.5483/BMBRep.2011.44.5.347
  7. Laiho A, Kotaja N, Gyenesei A, Sironen A. Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS One 2013;8:e61558. https://doi.org/10.1371/journal.pone.0061558
  8. Feugang JM, Rodriguez-Osorio N, Kaya A, Wang H, Page G, Ostermeier GC, et al. Transcriptome analysis of bull spermatozoa: implications for male fertility. Reprod Biomed Online 2010;21: 312-24. https://doi.org/10.1016/j.rbmo.2010.06.022
  9. Garcia-Herrero S, Garrido N, Martinez-Conejero JA, Remohi J, Pellicer A, Meseguer M. Differential transcriptomic profile in spermatozoa achieving pregnancy or not via ICSI. Reprod Biomed Online 2011;22:25-36. https://doi.org/10.1016/j.rbmo.2010.09.013
  10. Yildiz Y, Matern H, Thompson B, Allegood JC, Warren RL, Ramirez DM, et al. Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J Clin Invest 2006;116: 2985-94. https://doi.org/10.1172/JCI29224
  11. SphinGOMAP [Internet]. Atlanta: Georgia Institute of Technology; c2004-2007 [cited 2015 Sep 24]. Available from: www.sphingomap.org.
  12. Agarwal A, Durairajanayagam D, Halabi J, Peng J, Vazquez-Levin M. Proteomics, oxidative stress and male infertility. Reprod Biomed Online 2014;29:32-58. https://doi.org/10.1016/j.rbmo.2014.02.013
  13. Kongmanas K, Xu H, Yaghoubian A, Franchini L, Panza L, Ronchetti F, et al. Quantification of seminolipid by LC-ESI-MS/MSmultiple reaction monitoring: compensatory levels in Cgt(+/(-)) mice. J Lipid Res 2010;51:3548-58. https://doi.org/10.1194/jlr.D010116
  14. Sosnik J, Miranda PV, Spiridonov NA, Yoon SY, Fissore RA, Johnson GR, et al. Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J Cell Sci 2009;122:2741-9. https://doi.org/10.1242/jcs.047225
  15. Boue F, Blais J, Sullivan R. Surface localization of P34H an epididymal protein, during maturation, capacitation, and acrosome reaction of human spermatozoa. Biol Reprod 1996;54:1009-17. https://doi.org/10.1095/biolreprod54.5.1009
  16. Lasserre A, Gonzalez-Echeverria F, Moules C, Tezon JG, Miranda PV, Vazquez-Levin MH. Identification of human sperm proteins involved in the interaction with homologous zona pellucida. Fertil Steril 2003;79 Suppl 3:1606-15. https://doi.org/10.1016/S0015-0282(03)00251-6
  17. Myles DG, Hyatt H, Primakoff P. Binding of both acrosome-intact and acrosome-reacted guinea pig sperm to the zona pellucida during in vitro fertilization. Dev Biol 1987;121:559-67. https://doi.org/10.1016/0012-1606(87)90191-6
  18. Chauhan JS, Rao A, Raghava GP. In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS One 2013;8:e67008. https://doi.org/10.1371/journal.pone.0067008
  19. Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 2002:310-22.
  20. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, et al. Precision mapping of the human OGalNAc glycoproteome through SimpleCell technology. EMBO J 2013;32:1478-88. https://doi.org/10.1038/emboj.2013.79
  21. Higgins E. Carbohydrate analysis throughout the development of a protein therapeutic. Glycoconj J 2010;27:211-25. https://doi.org/10.1007/s10719-009-9261-x
  22. Kobata A. Structures and functions of the sugar chains of glycoproteins. Eur J Biochem 1992;209:483-501. https://doi.org/10.1111/j.1432-1033.1992.tb17313.x
  23. Benoff S. Carbohydrates and fertilization: an overview. Mol Hum Reprod 1997;3:599-637. https://doi.org/10.1093/molehr/3.7.599
  24. Lis H, Sharon N. Protein glycosylation. In: Christen P, Hofmann E, editors. EJB reviews 1993. Berlin: Springer Berlin Heidelberg; 1994. p. 173-99.
  25. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell 2006;126:855-67. https://doi.org/10.1016/j.cell.2006.08.019
  26. Doucey MA, Hess D, Cacan R, Hofsteenge J. Protein C-mannosylation is enzyme-catalysed and uses dolichyl-phosphate-mannose as a precursor. Mol Biol Cell 1998;9:291-300. https://doi.org/10.1091/mbc.9.2.291
  27. Krieg J, Hartmann S, Vicentini A, Glasner W, Hess D, Hofsteenge J. Recognition signal for C-mannosylation of Trp-7 in RNase 2 consists of sequence Trp-x-x-Trp. Mol Biol Cell 1998;9:301-9. https://doi.org/10.1091/mbc.9.2.301
  28. Tecle E, Gagneux P. Sugar-coated sperm: Unraveling the functions of the mammalian sperm glycocalyx. Mol Reprod Dev 2015;82:635-50. https://doi.org/10.1002/mrd.22500
  29. Wang G, Wu Y, Zhou T, Guo Y, Zheng B, Wang J, et al. Mapping of the N-linked glycoproteome of human spermatozoa. J Proteome Res 2013;12:5750-9. https://doi.org/10.1021/pr400753f
  30. Tollner TL, Yudin AI, Treece CA, Overstreet JW, Cherr GN. Macaque sperm coating protein DEFB126 facilitates sperm penetration of cervical mucus. Hum Reprod 2008;23:2523-34. https://doi.org/10.1093/humrep/den276
  31. Ozerlat I. Male factor infertility: mutation of sperm defensin causes subfertility. Nat Rev Urol 2011;8:474.
  32. Tollner TL, Venners SA, Hollox EJ, Yudin AI, Liu X, Tang G, et al. A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility. Sci Transl Med 2011;3:92ra65. https://doi.org/10.1126/scitranslmed.3002289
  33. Bahat A, Eisenbach M. Human sperm thermotaxis is mediated by phospholipase C and inositol trisphosphate receptor Ca2+ channel. Biol Reprod 2010;82:606-16. https://doi.org/10.1095/biolreprod.109.080127
  34. Baxendale RW, Fraser LR. Immunolocalization of multiple Galpha subunits in mammalian spermatozoa and additional evidence for Galphas. Mol Reprod Dev 2003;65:104-13. https://doi.org/10.1002/mrd.10295
  35. Walensky LD, Roskams AJ, Lefkowitz RJ, Snyder SH, Ronnett GV. Odorant receptors and desensitization proteins colocalize in mammalian sperm. Mol Med 1995;1:130-41.
  36. Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Curr Biol 2013;23:443-52.
  37. Qi H, Moran MM, Navarro B, Chong JA, Krapivinsky G, Krapivinsky L, et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci U S A 2007;104:1219-23. https://doi.org/10.1073/pnas.0610286104
  38. Bray C, Son JH, Kumar P, Meizel S. Mice deficient in CHRNA7, a subunit of the nicotinic acetylcholine receptor, produce sperm with impaired motility. Biol Reprod 2005;73:807-14. https://doi.org/10.1095/biolreprod.105.042184
  39. Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR, Bachman ES, et al. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature 1995;375:146-8. https://doi.org/10.1038/375146a0
  40. Ikawa M, Tokuhiro K, Yamaguchi R, Benham AM, Tamura T, Wada I, et al. Calsperin is a testis-specific chaperone required for sperm fertility. J Biol Chem 2011;286:5639-46. https://doi.org/10.1074/jbc.M110.140152
  41. Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, et al. Fertilization defects in sperm from mice lacking fertilin beta. Science 1998;281:1857-9. https://doi.org/10.1126/science.281.5384.1857
  42. Marcello MR, Jia W, Leary JA, Moore KL, Evans JP. Lack of tyrosylprotein sulfotransferase-2 activity results in altered sperm-egg interactions and loss of ADAM3 and ADAM6 in epididymal sperm. J Biol Chem 2011;286:13060-70. https://doi.org/10.1074/jbc.M110.175463
  43. Shen C, Kuang Y, Liu J, Feng J, Chen X, Wu W, et al. Prss37 is required for male fertility in the mouse. Biol Reprod 2013;88:123. https://doi.org/10.1095/biolreprod.112.107086
  44. Yamaguchi R, Fujihara Y, Ikawa M, Okabe M. Mice expressing aberrant sperm-specific protein PMIS2 produce normal-looking but fertilization-incompetent spermatozoa. Mol Biol Cell 2012; 23:2671-9. https://doi.org/10.1091/mbc.E11-12-1025
  45. Fujihara Y, Okabe M, Ikawa M. GPI-anchored protein complex, LY6K/TEX101, is required for sperm migration into the oviduct and male fertility in mice. Biol Reprod 2014;90:60. https://doi.org/10.1095/biolreprod.113.112888
  46. Zigo M, Jonakova V, Sulc M, Manaskova-Postlerova P. Characterization of sperm surface protein patterns of ejaculated and capacitated boar sperm, with the detection of ZP binding candidates. Int J Biol Macromol 2013;61:322-8. https://doi.org/10.1016/j.ijbiomac.2013.07.014
  47. Zhuang D, Qiao Y, Zhang X, Miao S, Koide SS, Wang L. YWK-II protein/APLP2 in mouse gametes: potential role in fertilization. Mol Reprod Dev 2006;73:61-7. https://doi.org/10.1002/mrd.20380
  48. Lu Q, Shur BD. Sperm from beta 1,4-galactosyltransferase-null mice are refractory to ZP3-induced acrosome reactions and penetrate the zona pellucida poorly. Development 1997;124: 4121-31.
  49. Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C. The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol 2006;17:254-63. https://doi.org/10.1016/j.semcdb.2006.02.012
  50. Koyama K, Ito K, Hasegawa A. Role of male reproductive tract CD52 (mrt-CD52) in reproduction. Soc Reprod Fertil Suppl 2007;63:103-10.
  51. Lum L, Blobel CP. Evidence for distinct serine protease activities with a potential role in processing the sperm protein fertilin. Dev Biol 1997;191:131-45. https://doi.org/10.1006/dbio.1997.8609
  52. Wright GJ, Bianchi E. The challenges involved in elucidating the molecular basis of sperm-egg recognition in mammals and approaches to overcome them. Cell Tissue Res 2015 July 30 [Epub]. http://doi.dx.org/10.1007/s00441-015-2243-3.
  53. Caballero J, Frenette G, D'Amours O, Belleannee C, Lacroix-Pepin N, Robert C, et al. Bovine sperm raft membrane associated Glioma Pathogenesis-Related 1-like protein 1 (GliPr1L1) is modified during the epididymal transit and is potentially involved in sperm binding to the zona pellucida. J Cell Physiol 2012;227: 3876-86. https://doi.org/10.1002/jcp.24099
  54. Liu Y, Pei J, Grishin N, Snell WJ. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction. Development 2015;142:962-71. https://doi.org/10.1242/dev.118844
  55. Asquith KL, Harman AJ, McLaughlin EA, Nixon B, Aitken RJ. Localization and significance of molecular chaperones, heat shock protein 1, and tumor rejection antigen gp96 in the male reproductive tract and during capacitation and acrosome reaction. Biol Reprod 2005;72:328-37. https://doi.org/10.1095/biolreprod.104.034470
  56. Mitchell LA, Nixon B, Aitken RJ. Analysis of chaperone proteins associated with human spermatozoa during capacitation. Mol Hum Reprod 2007;13:605-13. https://doi.org/10.1093/molehr/gam043
  57. Wolf DE, McKinnon CA, Leyton L, Loveland KL, Saling PM. Protein dynamics in sperm membranes: implications for sperm function during gamete interaction. Mol Reprod Dev 1992;33:228-34. https://doi.org/10.1002/mrd.1080330217
  58. Primakoff P, Woolman-Gamer L, Tung KS, Myles DG. Reversible contraceptive effect of PH-20 immunization in male guinea pigs. Biol Reprod 1997;56:1142-6. https://doi.org/10.1095/biolreprod56.5.1142
  59. McLeskey SB, Dowds C, Carballada R, White RR, Saling PM. Molecules involved in mammalian sperm-egg interaction. Int Rev Cytol 1998;177:57-113.
  60. Podlaha O, Webb DM, Zhang J. Accelerated evolution and loss of a domain of the sperm-egg-binding protein SED1 in ancestral primates. Mol Biol Evol 2006;23:1828-31. https://doi.org/10.1093/molbev/msl066
  61. Lin YN, Roy A, Yan W, Burns KH, Matzuk MM. Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol 2007;27: 6794-805. https://doi.org/10.1128/MCB.01029-07
  62. Chau KM, Cornwall GA. Reduced fertility in vitro in mice lacking the cystatin CRES (cystatin-related epididymal spermatogenic): rescue by exposure of spermatozoa to dibutyryl cAMP and isobutylmethylxanthine. Biol Reprod 2011;84:140-52. https://doi.org/10.1095/biolreprod.110.084855
  63. Kimura M, Kim E, Kang W, Yamashita M, Saigo M, Yamazaki T, et al. Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biol Reprod 2009;81:939-47. https://doi.org/10.1095/biolreprod.109.078816
  64. Reitinger S, Laschober GT, Fehrer C, Greiderer B, Lepperdinger G. Mouse testicular hyaluronidase-like proteins SPAM1 and HYAL5 but not HYALP1 degrade hyaluronan. Biochem J 2007;401:79-85. https://doi.org/10.1042/BJ20060598
  65. Richardson R, Nikolajczyk B, Beavers J, Widgren E, O'Rand M. Zona pelludica binding proteins of spermatozoa: mouse anti- RSA cross-reactive proteins. In: Baccetti B, editor. Comparative spermatology 20 years after. New York: Raven Press; 1991. p. 587-91.
  66. Meizel S, Son JH. Studies of sperm from mutant mice suggesting that two neurotransmitter receptors are important to the zona pellucida-initiated acrosome reaction. Mol Reprod Dev 2005; 72:250-8. https://doi.org/10.1002/mrd.20336
  67. Yamashita M, Honda A, Ogura A, Kashiwabara S, Fukami K, Baba T. Reduced fertility of mouse epididymal sperm lacking Prss21/Tesp5 is rescued by sperm exposure to uterine microenvironment. Genes Cells 2008;13:1001-13. https://doi.org/10.1111/j.1365-2443.2008.01222.x
  68. Livera G, Xie F, Garcia MA, Jaiswal B, Chen J, Law E, et al. Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function. Mol Endocrinol 2005;19:1277-90. https://doi.org/10.1210/me.2004-0318
  69. Saxena DK, Toshimori K. Molecular modifications of MC31/CE9, a sperm surface molecule, during sperm capacitation and the acrosome reaction in the rat: is MC31/CE9 required for fertilization? Biol Reprod 2004;70:993-1000. https://doi.org/10.1095/biolreprod.103.021667
  70. Kim KS, Cha MC, Gerton GL. Mouse sperm protein sp56 is a component of the acrosomal matrix. Biol Reprod 2001;64:36-43. https://doi.org/10.1095/biolreprod64.1.36
  71. Bianchi E, Wright GJ. Izumo meets Juno: preventing polyspermy in fertilization. Cell Cycle 2014;13:2019-20. https://doi.org/10.4161/cc.29461
  72. Yamatoya K, Yoshida K, Ito C, Maekawa M, Yanagida M, Takamori K, et al. Equatorin: identification and characterization of the epitope of the MN9 antibody in the mouse. Biol Reprod 2009;81: 889-97. https://doi.org/10.1095/biolreprod.109.077438
  73. Zini A, Fahmy N, Belzile E, Ciampi A, Al-Hathal N, Kotb A. Antisperm antibodies are not associated with pregnancy rates after IVF and ICSI: systematic review and meta-analysis. Hum Reprod 2011;26:1288-95. https://doi.org/10.1093/humrep/der074
  74. Barroso G, Valdespin C, Vega E, Kershenovich R, Avila R, Avendano C, et al. Developmental sperm contributions: fertilization and beyond. Fertil Steril 2009;92:835-48. https://doi.org/10.1016/j.fertnstert.2009.06.030
  75. Kawano N, Yoshida K, Miyado K, Yoshida M. Lipid rafts: keys to sperm maturation, fertilization, and early embryogenesis. J Lipids 2011;2011:264706.
  76. Cooper TG. Interactions between epididymal secretions and spermatozoa. J Reprod Fertil Suppl 1998;53:119-36.
  77. Jones R. Sperm survival versus degradation in the Mammalian epididymis: a hypothesis. Biol Reprod 2004;71:1405-11. https://doi.org/10.1095/biolreprod.104.031252
  78. Tulsiani DR. Glycan-modifying enzymes in luminal fluid of the mammalian epididymis: an overview of their potential role in sperm maturation. Mol Cell Endocrinol 2006;250:58-65. https://doi.org/10.1016/j.mce.2005.12.025
  79. Srivastav A, Singh B, Chandra A, Jamal F, Khan MY, Chowdhury SR. Partial characterization, sperm association and significance of N- and O-linked glycoproteins in epididymal fluid of rhesus monkeys (Macaca mulatta). Reproduction 2004;127:343-57. https://doi.org/10.1530/rep.1.00119
  80. Lassalle B, Testart J. Human zona pellucida recognition associated with removal of sialic acid from human sperm surface. J Reprod Fertil 1994;101:703-11. https://doi.org/10.1530/jrf.0.1010703
  81. Chandra A, Srinivasan KR, Jamal F, Mehrotra PK, Singh RL, Srivastav A. Post-translational modifications in glycosylation status during epididymal passage and significance in fertility of a 33 kDa glycoprotein (MEF3) of rhesus monkey (Macaca mulatta). Reproduction 2008;135:761-70. https://doi.org/10.1530/REP-07-0525
  82. Morin G, Lalancette C, Sullivan R, Leclerc P. Identification of the bull sperm p80 protein as a PH-20 ortholog and its modification during the epididymal transit. Mol Reprod Dev 2005;71:523-34. https://doi.org/10.1002/mrd.20308
  83. Li MW, Yudin AI, Robertson KR, Cherr GN, Overstreet JW. Importance of glycosylation and disulfide bonds in hyaluronidase activity of macaque sperm surface PH-20. J Androl 2002;23:211-9.
  84. Kuo CW, Chen CM, Lee YC, Chu ST, Khoo KH. Glycomics and proteomics analyses of mouse uterine luminal fluid revealed a predominance of Lewis Y and X epitopes on specific protein carriers. Mol Cell Proteomics 2009;8:325-42. https://doi.org/10.1074/mcp.M800320-MCP200
  85. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 2004;429:154.
  86. Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update 2014;20:40-62. https://doi.org/10.1093/humupd/dmt046
  87. Carpentier M, Guillemette C, Bailey JL, Boileau G, Jeannotte L, DesGroseillers L, et al. Reduced fertility in male mice deficient in the zinc metallopeptidase NL1. Mol Cell Biol 2004;24:4428-37. https://doi.org/10.1128/MCB.24.10.4428-4437.2004
  88. Seidah NG, Day R, Hamelin J, Gaspar A, Collard MW, Chretien M. Testicular expression of PC4 in the rat: molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase. Mol Endocrinol 1992;6:1559-70.
  89. Gyamera-Acheampong C, Mbikay M. Proprotein convertase subtilisin/kexin type 4 in mammalian fertility: a review. Hum Reprod Update 2009;15:237-47. https://doi.org/10.1093/humupd/dmn060
  90. Kurokawa M, Sato K, Wu H, He C, Malcuit C, Black SJ, et al. Functional, biochemical, and chromatographic characterization of the complete [Ca2+]i oscillation-inducing activity of porcine sperm. Dev Biol 2005;285:376-92. https://doi.org/10.1016/j.ydbio.2005.06.029
  91. Yoshida N, Amanai M, Fukui T, Kajikawa E, Brahmajosyula M, Iwahori A, et al. Broad, ectopic expression of the sperm protein PLCZ1 induces parthenogenesis and ovarian tumours in mice. Development 2007;134:3941-52. https://doi.org/10.1242/dev.007930
  92. Hachen A, Jewgenow K, Braun BC. Sequence analysis of feline oviductin and its expression during the estrous cycle in the domestic cat (Felis catus). Theriogenology 2012;77:539-49. https://doi.org/10.1016/j.theriogenology.2011.08.029
  93. Nancarrow CD, Hill JL. Oviduct proteins in fertilization and early embryo development. J Reprod Fertil Suppl 1995;49:3-13.
  94. Nawale RB, Mourya VK, Bhise SB. Non-enzymatic glycation of proteins: a cause for complications in diabetes. Indian J Biochem Biophys 2006;43:337-44.
  95. Bousova I, Vukasovic D, Juretic D, Palicka V, Drsata J. Enzyme activity and AGE formation in a model of AST glycoxidation by Dfructose in vitro. Acta Pharm 2005;55:107-14.
  96. Bunn HF, Gabbay KH, Gallop PM. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 1978;200:21-7. https://doi.org/10.1126/science.635569
  97. Bunn HF. Nonenzymatic glycosylation of protein: relevance to diabetes. Am J Med 1981;70:325-30. https://doi.org/10.1016/0002-9343(81)90769-5
  98. Takeuchi M, Iwaki M, Takino J, Shirai H, Kawakami M, Bucala R, et al. Immunological detection of fructose-derived advanced glycation end-products. Lab Invest 2010;90:1117-27. https://doi.org/10.1038/labinvest.2010.62
  99. Cheon YP, Kim CH, Kang BM, et al. Spermatozoa characteristics of streptozotocin-induced diabetic wistar rat: acrosome reaction and spermatozoa concentration. Korean J Fertil Steril 1999;26: 89-96.
  100. Eibl N, Spatz M, Fischer GF, Mayr WR, Samstag A, Wolf HM, et al. Impaired primary immune response in type-1 diabetes: results from a controlled vaccination study. Clin Immunol 2002;103: 249-59. https://doi.org/10.1006/clim.2002.5220

Cited by

  1. Pentacle gold–copper alloy nanocrystals: a new system for entering male germ cells in vitro and in vivo vol.6, pp.None, 2016, https://doi.org/10.1038/srep39592
  2. Expression of the O -Glycosylation Enzyme GalNAc-T3 in the Equatorial Segment Correlates with the Quality of Spermatozoa vol.19, pp.10, 2015, https://doi.org/10.3390/ijms19102949
  3. N‐glycosylation of uterine endometrium determines its receptivity vol.235, pp.2, 2015, https://doi.org/10.1002/jcp.29022
  4. Biological Functions and Large-Scale Profiling of Protein Glycosylation in Human Semen vol.19, pp.10, 2015, https://doi.org/10.1021/acs.jproteome.9b00795
  5. Biological Functions and Large-Scale Profiling of Protein Glycosylation in Human Semen vol.19, pp.10, 2015, https://doi.org/10.1021/acs.jproteome.9b00795
  6. Alterations in epididymal sperm maturation caused by ageing vol.33, pp.18, 2015, https://doi.org/10.1071/rd21081
  7. Insights into the Mechanism of Bovine Spermiogenesis Based on Comparative Transcriptomic Studies vol.11, pp.1, 2015, https://doi.org/10.3390/ani11010080