References
- Liaunardy-Jopeace A, Gay NJ. Molecular and cellular regulation of Toll-like receptor-4 activity induced by lipopolysaccharide ligands. Front Immunol 2014;5:473.
- Fresno M, Alvarez R, Cuesta N. Toll-like receptors, inflammation, metabolism and obesity. Arch Physiol Biochem 2011;117:151-64. https://doi.org/10.3109/13813455.2011.562514
- Monaco C, Terrando N, Midwood KS. Toll-like receptor signaling: common pathways that drive cardiovascular disease and rheumatoid arthritis. Arthritis Care Res (Hoboken) 2011;63:500-11. https://doi.org/10.1002/acr.20382
- Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, Ikeda H. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther 2003;100:171-94. https://doi.org/10.1016/j.pharmthera.2003.08.003
- Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy: from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 2005;1754:253-62. https://doi.org/10.1016/j.bbapap.2005.08.017
- Krakauer T. Molecular therapeutic targets in inflammation: cyclooxygenase and NF-kappaB. Curr Drug Targets Inflamm Allergy 2004;3:317-24. https://doi.org/10.2174/1568010043343714
-
Ivanenkov YA, Balakin KV, Lavrovsky Y. Small molecule inhibitors of NF-
${\kappa}B$ and JAK/STAT signal transduction pathways as promising anti-inflammatory therapeutics. Mini Rev Med Chem 2011;11:55-78. https://doi.org/10.2174/138955711793564079 - Saar M. Fungi in Khanty folk medicine. J Ethnopharmacol 1991;31:175-9. https://doi.org/10.1016/0378-8741(91)90003-V
- Ito H, Sugiura M, Miyazaki T. Antitumor polysaccharide fraction from the culture filtrate of Fomes fomentarius. Chem Pharm Bull (Tokyo) 1976;24:2575. https://doi.org/10.1248/cpb.24.2575
- Park YM, Kim IT, Park HJ, Choi JW, Park KY, Lee JD, Nam BH, Kim DG, Lee JY, Lee KT. Anti-inflammatory and anti-nociceptive effects of the methanol extract of Fomes fomentarius. Biol Pharm Bull 2004;27:1588-93. https://doi.org/10.1248/bpb.27.1588
- Lee JS. Effects of Fomes fomentarius supplementation on antioxidant enzyme activities, blood glucose, and lipid profile in streptozotocin-induced diabetic rats. Nutr Res 2005;25:187-95. https://doi.org/10.1016/j.nutres.2005.01.001
- Chen W, Zhao Z, Chen SF, Li YQ. Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour Technol 2008;99:3187-94. https://doi.org/10.1016/j.biortech.2007.05.049
- Rollo F, Sassaroli S, Ubaldi M. Molecular phylogeny of the fungi of the Iceman's grass clothing. Curr Genet 1995;28:289-97. https://doi.org/10.1007/BF00309789
- Singh P, Rangaswa S. Chemical examination of Fomes fomentarius (L) Fr. Indian J Chem 1965;3:575.
- Yokoyama A, Natori S, Aoshima K. Distribution of tetracyclic triterpenoids of lanostane group and sterols in the higher fungi especially of the polyporaceae and related families. Phytochemistry 1975;14:487-97. https://doi.org/10.1016/0031-9422(75)85115-6
- Arpin N, Favre-Bonvin J, Steglich W. Le fomentariol: Nouvelle benzotropolone isolee de Fomes fomentarius. Phytochemistry 1974;13:1949-52. https://doi.org/10.1016/0031-9422(74)85123-X
- Breton T, Liaigre D, Belgsir EM. Allylic oxidation: easy synthesis of alkenones from activated alkenes with TEMPO. Tetrahedron Lett 2005;46:2487-90. https://doi.org/10.1016/j.tetlet.2005.02.032
- Ferrari M, Fornasiero MC, Isetta AM. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods 1990;131:165-72. https://doi.org/10.1016/0022-1759(90)90187-Z
- Predonzani A, Cali B, Agnellini AH, Molon B. Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World J Exp Med 2015;5:64-76. https://doi.org/10.5493/wjem.v5.i2.64
- Wolin MS. Reactive oxygen species and the control of vascular function. Am J Physiol Heart Circ Physiol 2009;296:H539-49. https://doi.org/10.1152/ajpheart.01167.2008
-
Yang SH, Ahn EK, Lee JA, Shin TS, Tsukamoto C, Suh JW, Mei I, Chung G. Soyasaponins Aa and Ab exert an antiobesity effect in 3T3-L1 adipocytes through downregulation of
$PPAR\gamma$ . Phytother Res 2015;29:281-7. https://doi.org/10.1002/ptr.5252 - Choi S, Nguyen VT, Tae N, Lee S, Ryoo S, Min BS, Lee JH. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells. Toxicol Appl Pharmacol 2014; 280:434-42. https://doi.org/10.1016/j.taap.2014.09.007
- O'Callaghan YC, O'Brien NM, Kenny O, Harrington T, Brunton N, Smyth TJ. Anti-inflammatory effects of wild Irish mushroom extracts in RAW264.7 mouse macrophage cells. J Med Food 2015;18:202-7. https://doi.org/10.1089/jmf.2014.0012
- Dudhgaonkar S, Thyagarajan A, Sliva D. Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. Int Immunopharmacol 2009;9:1272-80. https://doi.org/10.1016/j.intimp.2009.07.011
- Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol 2012;188:21-8. https://doi.org/10.4049/jimmunol.1101029
- Nakanishi M, Rosenberg DW. Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol 2013;35:123-37. https://doi.org/10.1007/s00281-012-0342-8
- Jedinak A, Dudhgaonkar S, Wu QL, Simon J, Sliva D. Antiinflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-kappaB and AP-1 signaling. Nutr J 2011;10:52. https://doi.org/10.1186/1475-2891-10-52
- Zha L, Chen J, Sun S, Mao L, Chu X, Deng H, Cai J, Li X, Liu Z, Cao W. Soyasaponins can blunt inflammation by inhibiting the reactive oxygen species-mediated activation of PI3K/Akt/NF-kB pathway. PLoS One 2014;9:e107655. https://doi.org/10.1371/journal.pone.0107655
- Zhu ZG, Jin H, Yu PJ, Tian YX, Zhang JJ, Wu SG. Mollugin inhibits the inflammatory response in lipopolysaccharidestimulated RAW264.7 macrophages by blocking the Janus kinase-signal transducers and activators of transcription signaling pathway. Biol Pharm Bull 2013;36:399-406. https://doi.org/10.1248/bpb.b12-00804