DOI QR코드

DOI QR Code

Linear Unequal Error Protection Codes based on Terminated Convolutional Codes

  • Bredtmann, Oliver (Department of Communication Systems, University of Duisburg-Essen) ;
  • Czylwik, Andreas (Department of Communication Systems, University of Duisburg-Essen)
  • 투고 : 2012.11.16
  • 심사 : 2014.10.17
  • 발행 : 2015.02.28

초록

Convolutional codes which are terminated by direct truncation (DT) and zero tail termination provide unequal error protection. When DT terminated convolutional codes are used to encode short messages, they have interesting error protection properties. Such codes match the significance of the output bits of common quantizers and therefore lead to a low mean square error (MSE) when they are used to encode quantizer outputs which are transmitted via a noisy digital communication system. A code construction method that allows adapting the code to the channel is introduced, which is based on time-varying convolutional codes. We can show by simulations that DT terminated convolutional codes lead to a lower MSE than standard block codes for all channel conditions. Furthermore, we develop an MSE approximation which is based on an upper bound on the error probability per information bit. By means of this MSE approximation, we compare the convolutional codes to linear unequal error protection code construction methods from the literature for code dimensions which are relevant in analog to digital conversion systems. In numerous situations, the DT terminated convolutional codes have the lowest MSE among all codes.

키워드

참고문헌

  1. W. Li et al., "Networked fault detection systems with noisy data transmission," Automatisierungstechnik, vol. 56, pp. 49-57, 2008.
  2. P. Wintz and A. Kurtenbach, "Waveform error control in pcm telemetry," IEEE Trans. Inf. Theory, vol. 14, no. 5, pp. 650-661, 1968. https://doi.org/10.1109/TIT.1968.1054209
  3. C. Kilgus and W. Gore, "Root-mean-square error in encoded digital telemetry," IEEE Trans. Commun., vol. 20, no. 3, pp. 315-320, 1972. https://doi.org/10.1109/TCOM.1972.1091174
  4. A. Nazer and F. Alajaji, "Unequal error protection and source-channel decoding of celp speech," Electron. Lett., vol. 38, no. 7, pp. 347-349, 2002. https://doi.org/10.1049/el:20020242
  5. M.M. Buchner, "Coding for numerical data transmission," Bell Syst. Technical J., vol. 46, pp. 1025-1041, 1966.
  6. A. Bernstein, K. Steiglitz, and J. Hopcroft, "Encoding of analog signals for binary symmetric channels," IEEE Trans. Inf. Theory, vol. 12, no. 4, pp. 425-430, 1966. https://doi.org/10.1109/TIT.1966.1053921
  7. A. El Gamal et al., "Using simulated annealing to design good codes," IEEE Trans. Inf. Theory, vol. 33, no. 1, pp. 116-123, 1987. https://doi.org/10.1109/TIT.1987.1057277
  8. D. J. Goodman and T. J. Mousley, "Using simulated annealing to design digital transmission codes for analogue sources," Electron. Lett., vol. 24, no. 10, pp. 617-619, 1988. https://doi.org/10.1049/el:19880418
  9. T. Crimmins and H. Horwitz, "Mean-square-error optimum coset leaders for group codes," IEEE Trans. Inf. Theory, vol. 16, no. 4, pp. 429-432, 1970. https://doi.org/10.1109/TIT.1970.1054489
  10. G. Redinbo, "Optimum symbol-by-symbol mean-square error channel coding," IEEE Trans. Inf. Theory, vol. 25, no. 4, pp. 387-405, 1979. https://doi.org/10.1109/TIT.1979.1056069
  11. G. Redinbo, "On the design of mean-square error channel coding systems using cyclic codes," IEEE Trans. Inf. Theory, vol. 28, no. 3, pp. 406-413, 1982. https://doi.org/10.1109/TIT.1982.1056511
  12. G. Redinbo, "Optimum mean-square error use of convolutional codes," IEEE Trans. Inf. Theory, vol. 31, no. 1, pp. 18-33, 1985. https://doi.org/10.1109/TIT.1985.1057005
  13. G. Wolf and G. Redinbo, "The optimum mean-square estimate for decoding binary block codes," IEEE Trans. Inf. Theory, vol. 20, no. 3, pp. 344-351, 1974. https://doi.org/10.1109/TIT.1974.1055221
  14. S. Heinen and P. Vary, "Source-optimized channel coding for digital transmission channels," IEEE Trans. Inf. Theory, vol. 53, pp. 592-600, 2005.
  15. I. Na and D. L. Neuhoff, "The best binary linear block codes for scalar source-channel coding," in Proc. IEEE ISIT, 2007, pp. 741-745.
  16. S. Kim and D. L. Neuhoff, "Snake-in-the-box codes as robust quantizer index assignments," in Proc. IEEE ISIT, 2000, p. 402.
  17. F. Preparata and J. Nievergelt, "Difference-preserving codes," IEEE Trans. Inf. Theory, vol. 20, no. 5, pp. 643-649, 1974. https://doi.org/10.1109/TIT.1974.1055267
  18. O. Bredtmann and A. Czylwik, "Truncated convolutional codes as a new approach of unequal error protection," in Proc. IEEE VTC, 2010.
  19. O. Bredtmann, "Unequal error protection coding of quantized data," Dissertation, Univ. Duisburg-Essen, Duisburg, 2010.
  20. S. W. McLaughlin, D. L. Neuhoff, and J. J. Ashley, "Optimal binary index assignments for a class of equiprobable scalar and vector quantizers," IEEE Trans. Inf. Theory, vol. 41, no. 6, pp. 2031-2037, 1995. https://doi.org/10.1109/18.476331
  21. L. H. Harper, "Optimal assignment of numbers to vertices," SIAM, vol. 12, no. 1, pp. 131-135, 1964.
  22. L. Dunning and W. Robbins, "Optimal encoding of linear block codes for unequal error protection," Inf. Control, vol. 37, pp. 150-177, 1978. https://doi.org/10.1016/S0019-9958(78)90492-8
  23. B. Masnick, J. Wolf, "On linear unequal error protection codes," IEEE Trans. Inf. Theory, vol. 13, no. 4, pp. 600-607, 1967. https://doi.org/10.1109/TIT.1967.1054054
  24. W. van Gils, "Some constructions of linear unequal error protection codes," Philips J. Res., vol. 39, pp. 293-304, 1984.
  25. W. van Gils, "Linear unequal error protection codes from shorter codes (corresp.)," IEEE Trans. Inf. Theory, vol. 30, no. 3, pp. 544-546, 1984. https://doi.org/10.1109/TIT.1984.1056907
  26. W. van Gils, "Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes," IEEE Trans. Inf. Theory, vol. 29, no. 6, pp. 866-876, 1983. https://doi.org/10.1109/TIT.1983.1056753
  27. M.-C. Lin, C.-C. Lin, and S. Lin, "Computer search for binary cyclic uep codes of odd length up to 65," IEEE Trans. Inf. Theory, vol. 36, no. 4, pp. 924-935, 1990. https://doi.org/10.1109/18.53760
  28. R. H. Morelos-Zaragoza and S. Lin, "On a class of optimal nonbinary linear unequal-error-protection codes for two sets of messages," IEEE Trans. Inf. Theory, vol. 40, no. 1, pp. 196-200, 1994. https://doi.org/10.1109/18.272481
  29. M.-C. Chiu and C.-C. Chao, "A new construction of nonlinear unequal error protection codes," in Proc. IEEE ISIT, 1995, p. 496.
  30. G. Buch and F. Burket, "Non-linear codes and concatenated codes for unequal error protection," in Proc. MELECON, 1998, pp. 851-855.
  31. E. K. Englund and A. I. Hansson, "Constructive codes with unequal error protection," IEEE Trans. Inf. Theory, vol. 43, no. 2, pp. 715-721, 1997. https://doi.org/10.1109/18.556129
  32. D. Mandelbaum, "Unequal error protection codes derived from difference sets (corresp.)," IEEE Trans. Inf. Theory, vol. 18, no. 5, pp. 686-687, 1972. https://doi.org/10.1109/TIT.1972.1054870
  33. F. Ozbudak and H. Stichtenoth, "Constructing linear unequal error protection codes from algebraic curves," IEEE Trans. Inf. Theory, vol. 49, no. 6, pp. 1523-1526, 2003. https://doi.org/10.1109/TIT.2003.811925
  34. M. Matsunaga, D. Asano, and R. Kohne, "Unequal error protection using several convolutional codes," in Proc. ISIT, 1997.
  35. R. H. Morelos-Zaragoza and H. Imai, "Binary multilevel convolutional codes with unequal error protection capabilities," IEEE Tran. Commun., pp. 850-853, 1998.
  36. C. Pimentel et al., "Generalized punctured convolutional codes with unequal error protection," EURASIP J. Adv. Signal Process., 2008.
  37. J. R. Palazzo, "Linear unequal error protection convolutional codes," in Proc. IEEE ISIT, 1985, pp. 88-89.
  38. J. R. Palazzo, "On the linear unequal error protection convolutional codes," in IEEE GLOBECOM, 1986, pp. 1367-1371.
  39. D. G. Mills and J. D. J. Costello, "A bound on the unequal error protection capabilities of rate k/n convolutional codes," in Proc. IEEE ISIT, 1994.
  40. V. Pavlushkov, R. Johannesson, and V. V. Zyablov, "Unequal error protection for convolutional codes," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 700-708, 2006. https://doi.org/10.1109/TIT.2005.862122
  41. R. Jordan et al., "Woven convolutional codes and unequal error protection," in Proc. IEEE ISIT, 2001, p. 299.
  42. H. Ma and J. Wolf, "Binary unequal error-protection block codes formed from convolutional codes by generalized tail-biting," IEEE Trans. Inf. Theory, vol. 32, no. 6, pp. 776-786, 1986. https://doi.org/10.1109/TIT.1986.1057243
  43. S. Bates, Z. Chen, and X. Dong, "Low-density parity-check convolutional codes for ethernet networks," IEEE PACRIM, 2005, pp. 85-88.
  44. H. van Tilborg, "On quasi-cyclic codes with rate l/m (corresp.)," IEEE Trans. Inf. Theory, vol. 24, no. 5, pp. 628-630, 1978. https://doi.org/10.1109/TIT.1978.1055929
  45. G. C. Clark Jr. and J. B. Cain, "Error-Correction Coding for Digital Communications," Perseus Publishing, 1987.
  46. G. Poltyrev, "Bounds on the decoding error probability of binary linear codes via their spectra," IEEE Trans. Inf. Theory, pp. 1284-1292, 1994.
  47. M. J. Ryan and M. Frater, "Communications and information systems," Argos Press Series in Telecommunication Systems, 2002.
  48. M. Cedervall, R. Johannesson, and K. Zigangirov, "A new upper bound on the first-event error probability for maximum-likelihood decoding of fixed binary convolutional codes (corresp.)," IEEE Trans. Inf. Theory, vol. 30, no. 5, pp. 762-766, 2003. https://doi.org/10.1109/TIT.1984.1056961
  49. M. P. C. Fossorier, S. Lin, and D. Rhee, "Bit-error probability for maximum-likelihood decoding of linear block codes and related softdecision decoding methods," IEEE Trans. Inf. Theory, vol. 44, no. 7, pp. 3083-3090, 1998. https://doi.org/10.1109/18.737537