DOI QR코드

DOI QR Code

GPS/IMU/OBD 융합기반 ACF/IMMKF를 이용한 차량 Pitch 추정 알고리즘

Vehicular Pitch Estimation Algorithm with ACF/IMMKF Based on GPS/IMU/OBD Data Fusion

  • Kim, Ju-won (Hanyang University Department of Electronics and Computer Engineering) ;
  • Lee, Myung-su (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Lee, Sang-sun (Department of Electronics and Computer Engineering, Hanyang University)
  • 투고 : 2015.07.13
  • 심사 : 2015.09.09
  • 발행 : 2015.09.30

초록

도심지환경에서 정확한 차량 위치를 추정하기 위해서는 종방향 속도가 필요하다. 이러한 종방향 속도는 노면경사, 즉 차량의 피치각(Pitch) 산출을 통해서 가능하다. 하지만 단일 센서와 알고리즘을 이용한 피치각 추정에는 정확한 값을 기대할 수 없다. 본 논문에서는 정확한 피치각 추정을 위해 AKF(Adaptive Kalman Filter)와 CF(Complementary Filter)로 구성된 ACF(Adaptive Complementary Filter)를 이용하여 IMU(Inertial Measurement Unit)의 프로세스 노이즈와 측정에러를 주행환경에 맞게 조절하고, 이에 GPS(Global Positioning System)와 OBD(Onboard Equipment) 데이터를 융합한다. 그리고 노면 경사 모델에 따른 필터에 시스템 모델 최적화를 위해 IMMKF(Interactive Multiple Model Kalman Filter)를 사용하여 주행환경에 적합한 최종 피치각을 추정한다.

The longitudinal velocity is necessary for accurate vehicular positioning in urban environment. The pitch angle, which is a road slope, should be calculated to acquire the longitudinal velocity. However, it is impossible to consider very accurate pitch, when using a sensor and an algorithm. That's why process noise and positioning stimation error of IMU should be adjusted to the driving environment and fuse GPS, OBD data with ACF which consist of AKF, CF in this paper. Then, final pitch angle which is appropriate for driving environment is estimated by IMMKF in order to optimize the system model according to road slope models.

키워드

참고문헌

  1. D. Huang and H. Leung, "EMIMM based land vehicel navigation with GPS/INS," IEE Intell. Transportation Syst. Conf., pp. 624-629, Washington D.C, USA, Oct. 2004.
  2. Y. Kwon and B. Song, "A study on the GPS /IMU-based healthcare device," in Proc. KICS Int. Conf. Commun. 2013, pp. 161-162, Seoul, Korea, Nov. 2013.
  3. J. W. Kim, D. G. Lee, and S. S. Lee, "A study distributed algorithm of vehicle localization on the based on low cost GPS/IMU," in Proc. KICS Int. Conf. Commun. 2015, pp. 685-686, Busan, Korea, Jan. 2015.
  4. A. Fakharian, T. Gustafsson, and M. Mehrfam, "Adaptive kalman kiltering based navigation: an IMU/GPS integration approach," Int. Conf. Netw. Sensing Control, pp. 11-13, Delft, Netherlands, Apr. 2011.
  5. A. Bhawiyuga, H. H. Nhuyen, and H.-Y. Jeong, "A fusion of vehicle sensors and inter-vehicle communications for vehicular localizations," J. KICS, vol. 37, no. 07, pp. 544-553, Jul. 2012. https://doi.org/10.7840/KICS.2012.37.7C.544
  6. C. Hu, W. Chen, Y. Chen, and D. Liu, "Adaptive kalman filtering for vehicle navigation," J. Global Positioning Syst., vol. 2, no. 1, pp. 42-47, Jun. 2003. https://doi.org/10.5081/jgps.2.1.42
  7. J. Wang, M. Stewart, and M. Tsakiri, "Online stochastic modelling for INS/GPS integration," in Proc. ION GPS-1999, pp. 1887-1896, Nashville, TN, Sept. 1999.
  8. Q. Xia, M. Rao, Y. Ying, and X. Shen, "Adaptive fading kalman filter with an application," Automatica, vol. 30, no. 8, pp. 1333-1338, Aug. 1994. https://doi.org/10.1016/0005-1098(94)90112-0
  9. H. Park, "State-space representation of complementary filter and design of GPS/INS vertical channel damping loop," J. Inst. Control Robotics Syst., vol. 14, no. 8, pp. 727- 732, Aug. 2008. https://doi.org/10.5302/J.ICROS.2008.14.8.727
  10. H. E. Rauch, F. Tung, and C. T. Striebel, "Maximum likelihood estimates of linear dynamic systems," J. AIAA, vol. 3, no. 8, pp. 1445-1450, Aug. 1965. https://doi.org/10.2514/3.3166
  11. S. Julier, J. Uhlmann, and H. F. Durrant- Whyte, "A new method for the nonlinear transformation of means and covariances in filters and estimators," IEEE Trans. Automatic Control, vol. 45, no. 3, pp. 477-482, Mar. 2000. https://doi.org/10.1109/9.847726
  12. K. C. Jo, J. S. Kim, and M. H. Sunwoo, "Real-time road-slope estimation based on integration of onboard sensors with GPS using an IMMPDA filter," IEEE Trans. Intell. Transpotation Syst., vol. 14, no. 4, pp. 1718-1732, Dec. 2013. https://doi.org/10.1109/TITS.2013.2266438

피인용 문헌

  1. Network-RTK GPS 기반 자동차 정밀 위치 추정 vol.42, pp.2, 2015, https://doi.org/10.7840/kics.2017.42.2.424