DOI QR코드

DOI QR Code

Kernel RLS Algorithm Using Variable Forgetting Factor

가변 망각인자를 사용한 커널 RLS 알고리즘

  • Lim, Jun-Seok (Sejong University, Dept. of Electrical Engineering) ;
  • Pyeon, Yong-Guk (GangWon Provincial College, Dept. of Information and Communication)
  • Received : 2015.06.09
  • Accepted : 2015.08.20
  • Published : 2015.09.30

Abstract

In a recent work, kernel recursive least-squares tracker (KRLS-T) algorithm has been proposed. It is capable of tracking in non-stationary environments using a forgetting mechanism built on a Bayesian framework. The forgetting mechanism in KRLS-T is implemented by a fixed forgetting factor. In practice, however, we frequently meet that the fixed forgetting factor cannot handle time-varying system effectively. In this paper we propose a new KRLS-T with a variable forgetting factor. Experimental results show that proposed algorithm can handle time-varying system more effectively than the KRLS-T.

최근 KRLS-T라고 하는 커널 기반의 RLS 알고리즘이 제안되었다. 이 알고리즘은 비정재 환경에서 베이지안 이론에 기반한 망각 기저를 사용하고 있다. 이런 망각 기저의 핵심은 고정 망각인자를 사용하는 것이다. 그러나 실제 환경에서는 시스템의 비정재 정도까지도 시변인 경우가 많다. 이 경우 고정 망각인자로는 시스템의 바른 추정이 불가하다. 본 논문에서는 가변 망각인자를 사용한 KRLS-T를 제안한다. 그리고 모의 실험에서 가변 망각인자를 가진 KRLS-T가 시변 시스템의 추정에 더 효과적임을 보인다.

Keywords

References

  1. S. Haykin, Adaptive Filter Theory, 4th Ed., Prentice Hall, 2001.
  2. A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley-IEEE Press, 2003.
  3. M. Choi and S. Lee, "Comparison study of channel estimation algorithm for 4S maritime communications," J. KICS, vol. 38C, no. 3, pp. 288-295, Mar. 2013. https://doi.org/10.7840/kics.2013.38C.3.288
  4. J. S. Lim and Y. G. Pyeon, "Time delay estimation using LASSO (Least Absolute Selection and Shrinkage Operator)," J. KICS, vol. 39B, no. 10, pp. 715-721, Dec. 2014. https://doi.org/10.7840/kics.2014.39B.10.715
  5. C. Hwang and K. Kim, "Doppler frequency estimation for time-varying underwater acoustic communication channel," J. KICS, vol. 40, no. 01, pp. 187-192, Jan. 2015. https://doi.org/10.7840/kics.2015.40.1.187
  6. Y. Engel, S. Mannor, and R. Meir, "The kernel recursive least squares algorithm," IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275-2285, Aug. 2004. https://doi.org/10.1109/TSP.2004.830985
  7. W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filtering: A Comprehensive Introduction, Wiley, 2010.
  8. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag Inc., 1995.
  9. B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, The MIT Press, 2001.
  10. S. V. Vaerenbergh, J. Via, and I. Santamaria, "A sliding-window kernel RLS algorithm and its application to nonlinear channel identification," in Proc. IEEE ICASSP, pp. 789-792, Toulouse, France, May 2006.
  11. M. Lazaro-Gredilla, S. V. Vaerenbergh, and I. Santamaria, "A Bayesian approach to tracking with kernel recursive least-squares," in Proc. IEEE Int. Wksp. MLSP, pp. 1-6, Beijing, China, Sept. 2011.
  12. S. V. Vaerenbergh, M. Lazaro-Gredilla, and I. Santamaria, "Kernel recursive least-squares tracker for time varying regression," IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 8, pp. 1313-1326, Aug. 2012. https://doi.org/10.1109/TNNLS.2012.2200500
  13. L. Csato and M. Opper, "Sparse online Gaussian processes," Neural Computation, vol. 14, no. 3, pp. 641-668, 2002. https://doi.org/10.1162/089976602317250933
  14. W. Liu, I. Park, and J. C. Principe, "An information theoretic approach of designing sparse kernel adaptive filters," IEEE Trans. Neural Netw., vol. 20, no. 12, pp. 1950-1961, Dec. 2009. https://doi.org/10.1109/TNN.2009.2033676
  15. S. Song, J. S. Lim, S. Baek, and K. M. Sung, "Gauss Newton variable forgetting factor recursive least squares for time varying parameter tracking," Electron. Lett., vol. 36, no. 11, pp. 988-990, Nov. 2000. https://doi.org/10.1049/el:20000727
  16. S. Song, J. S. Lim, S. J. Baek, and K. M. Sung, "Variable forgetting factor linear least square algorithm for frequency selective fading channel estimation," IEEE Trans. Veh. Technol., vol. 51, no. 3, pp. 613-616, May 2002. https://doi.org/10.1109/TVT.2002.1002509
  17. J. S. Lim, S. Lee, and H. Pang, "Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations," Neural Comput. Appl., vol. 22, no. 3, pp. 569-576, May 2013. https://doi.org/10.1007/s00521-012-0873-x
  18. S. Lee, J. S. Lim, and K. M. Sung, "Low-complexity VFF-RLS algorithm using normalization technique," J. Acoust. Soc. Kr., vol. 29, no. 1, pp. 18-23, Jan. 2010.
  19. C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006.
  20. L. Csato and M. Opper, Sparse representation for gaussian process models, in Neural Inf. Process. Syst. 13, pp. 444-450, Cambridge, MA: MIT Press, 2001.
  21. S. V. Vaerenbergh, M. Lazaro-Gredilla, and I. Santamaria, "Kernel recursive least-squares tracker for time-varying regression," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 8, pp. 1313-1326, Aug. 2012. https://doi.org/10.1109/TNNLS.2012.2200500
  22. D. J. Park, B. E. Jun, and J. H. Kim, "Fast tracking RLS algorithm using novel variable forgetting factor with unity zone," Electron. Lett., vol. 27, no. 23, pp. 2150-2151, Nov. 1991. https://doi.org/10.1049/el:19911331
  23. A. K. Kohli and A. Rai, "Numeric variable forgetting factor RLS algorithm for second-order volterra filtering," Circuits Syst. Signal Process, vol. 32, no. 1, pp. 223-232, Feb. 2013. https://doi.org/10.1007/s00034-012-9445-7

Cited by

  1. 기울기 평균 벡터를 사용한 가변 스텝 최소 자승 알고리즘과 시변 망각 인자를 사용한 시변 음향 채널 추정 vol.38, pp.3, 2015, https://doi.org/10.7776/ask.2019.38.3.283