References
- S. Haykin, Adaptive Filter Theory, 4th Ed., Prentice Hall, 2001.
- A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley-IEEE Press, 2003.
- M. Choi and S. Lee, "Comparison study of channel estimation algorithm for 4S maritime communications," J. KICS, vol. 38C, no. 3, pp. 288-295, Mar. 2013. https://doi.org/10.7840/kics.2013.38C.3.288
- J. S. Lim and Y. G. Pyeon, "Time delay estimation using LASSO (Least Absolute Selection and Shrinkage Operator)," J. KICS, vol. 39B, no. 10, pp. 715-721, Dec. 2014. https://doi.org/10.7840/kics.2014.39B.10.715
- C. Hwang and K. Kim, "Doppler frequency estimation for time-varying underwater acoustic communication channel," J. KICS, vol. 40, no. 01, pp. 187-192, Jan. 2015. https://doi.org/10.7840/kics.2015.40.1.187
- Y. Engel, S. Mannor, and R. Meir, "The kernel recursive least squares algorithm," IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275-2285, Aug. 2004. https://doi.org/10.1109/TSP.2004.830985
- W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filtering: A Comprehensive Introduction, Wiley, 2010.
- V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag Inc., 1995.
- B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, The MIT Press, 2001.
- S. V. Vaerenbergh, J. Via, and I. Santamaria, "A sliding-window kernel RLS algorithm and its application to nonlinear channel identification," in Proc. IEEE ICASSP, pp. 789-792, Toulouse, France, May 2006.
- M. Lazaro-Gredilla, S. V. Vaerenbergh, and I. Santamaria, "A Bayesian approach to tracking with kernel recursive least-squares," in Proc. IEEE Int. Wksp. MLSP, pp. 1-6, Beijing, China, Sept. 2011.
- S. V. Vaerenbergh, M. Lazaro-Gredilla, and I. Santamaria, "Kernel recursive least-squares tracker for time varying regression," IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 8, pp. 1313-1326, Aug. 2012. https://doi.org/10.1109/TNNLS.2012.2200500
- L. Csato and M. Opper, "Sparse online Gaussian processes," Neural Computation, vol. 14, no. 3, pp. 641-668, 2002. https://doi.org/10.1162/089976602317250933
- W. Liu, I. Park, and J. C. Principe, "An information theoretic approach of designing sparse kernel adaptive filters," IEEE Trans. Neural Netw., vol. 20, no. 12, pp. 1950-1961, Dec. 2009. https://doi.org/10.1109/TNN.2009.2033676
- S. Song, J. S. Lim, S. Baek, and K. M. Sung, "Gauss Newton variable forgetting factor recursive least squares for time varying parameter tracking," Electron. Lett., vol. 36, no. 11, pp. 988-990, Nov. 2000. https://doi.org/10.1049/el:20000727
- S. Song, J. S. Lim, S. J. Baek, and K. M. Sung, "Variable forgetting factor linear least square algorithm for frequency selective fading channel estimation," IEEE Trans. Veh. Technol., vol. 51, no. 3, pp. 613-616, May 2002. https://doi.org/10.1109/TVT.2002.1002509
- J. S. Lim, S. Lee, and H. Pang, "Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations," Neural Comput. Appl., vol. 22, no. 3, pp. 569-576, May 2013. https://doi.org/10.1007/s00521-012-0873-x
- S. Lee, J. S. Lim, and K. M. Sung, "Low-complexity VFF-RLS algorithm using normalization technique," J. Acoust. Soc. Kr., vol. 29, no. 1, pp. 18-23, Jan. 2010.
- C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006.
- L. Csato and M. Opper, Sparse representation for gaussian process models, in Neural Inf. Process. Syst. 13, pp. 444-450, Cambridge, MA: MIT Press, 2001.
- S. V. Vaerenbergh, M. Lazaro-Gredilla, and I. Santamaria, "Kernel recursive least-squares tracker for time-varying regression," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 8, pp. 1313-1326, Aug. 2012. https://doi.org/10.1109/TNNLS.2012.2200500
- D. J. Park, B. E. Jun, and J. H. Kim, "Fast tracking RLS algorithm using novel variable forgetting factor with unity zone," Electron. Lett., vol. 27, no. 23, pp. 2150-2151, Nov. 1991. https://doi.org/10.1049/el:19911331
- A. K. Kohli and A. Rai, "Numeric variable forgetting factor RLS algorithm for second-order volterra filtering," Circuits Syst. Signal Process, vol. 32, no. 1, pp. 223-232, Feb. 2013. https://doi.org/10.1007/s00034-012-9445-7
Cited by
- 기울기 평균 벡터를 사용한 가변 스텝 최소 자승 알고리즘과 시변 망각 인자를 사용한 시변 음향 채널 추정 vol.38, pp.3, 2015, https://doi.org/10.7776/ask.2019.38.3.283