DOI QR코드

DOI QR Code

Binary Locally Repairable Codes from Complete Multipartite Graphs

완전다분할그래프 기반 이진 부분접속복구 부호

  • Kim, Jung-Hyun (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Nam, Mi-Young (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Song, Hong-Yeop (School of Electrical and Electronic Engineering, Yonsei University)
  • Received : 2015.07.28
  • Accepted : 2015.08.26
  • Published : 2015.09.30

Abstract

This paper introduces a generalized notion, referred to as joint locality, of the usual locality in distributed storage systems and proposes a code construction of binary locally repairable codes with joint locality ($r_1$=2, $r_2$=3 or 4). Joint locality is a set of numbers of nodes for repairing various failure patterns of nodes. The proposed scheme simplifies the code design problem utilizing complete multipartite graphs. Moreover, our construction can generate binary locally repairable codes achieving (2,t)-availability for any positive integer t. It means that each node can be repaired by t disjoint repair sets of cardinality 2. This property is useful for distributed storage systems since it permits parallel access to hot data.

본 논문은 분산 저장 시스템에서 기존의 부분접속수를 일반화한 개념인 결합 부분접속수를 소개하고, 결합 부분접속수($r_1$=2, $r_2$=3 or 4)를 만족하는 부호 설계 방식을 제안한다. 결합 부분접속수란 다양한 수의 노드 손실을 복구하기 위해 필요한 노드 수 집합을 의미한다. 제안된 방식은 완전다분할그래프를 사용하여 부호 설계를 단순화한다. 또한 제안된 방식으로 임의의 양의 정수 t에 대해 (2,t)-가용도를 갖는 이진 부분접속복구 부호를 설계할 수 있다. 즉, 1개 노드 손실 시 t개의 서로소인 복구 집합으로부터 각각 복구가 가능하며, 이때 각 복구 집합의 크기는 최대 2이다. 이러한 성질은 핫 데이터의 병렬처리를 가능하게 하므로 분산 저장 시스템에서 중요한 의미를 갖는다.

Keywords

References

  1. J.-H. Kim, J. S. Park, K.-H. Park, M. Y. Nam, and H.-Y. Song, "Trends of regenerating codes for next-generation cloud storage systems," Inf. Commun. Mag., vol. 31, no. 2, pp. 125-131, Feb. 2014.
  2. P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, "On the locality of codeword symbols," IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6925-6934, Nov. 2012. https://doi.org/10.1109/TIT.2012.2208937
  3. D. S. Papailiopoulos and A. G. Dimakis, "Locally repairable codes," IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5843-5855, Oct. 2014. https://doi.org/10.1109/TIT.2014.2325570
  4. J. S. Park, J.-H. Kim, K.-H. Park, and H.-Y. Song, "Average repair read cost of linear repairable code ensembles," J. KICS, vol. 39B, no. 11, Nov. 2014.
  5. J.-H. Kim, M.-Y. Nam, and H.-Y. Song, "Construction of [2^k-1+k, k, 2^{k-1}+1] codes attaining Griesmer bound and its locality," J. KICS, vol. 40, no. 03, Mar. 2015.
  6. N. Prakash, V. Lalitha, and P. V. Kumar, "Codes with locality for two erasures," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1962-1966, Jun. 2014.
  7. A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, "Locality and availability in distributed storage," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 681- 685, Jun. 2014.
  8. I. Tamo and A. Barg, "Bounds on locally recoverable codes with multiple recovering sets," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 691-695, Jun. 2014.
  9. A. Wang and Z. Zhang, "Repair locality with multiple erasure tolerance," IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6979-6987, Nov. 2014. https://doi.org/10.1109/TIT.2014.2351404
  10. A. Wang, Z. Zhang, and M. Liu, "Achieving arbitrary locality and availability in binary codes," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1866-1870, Jun. 2015.
  11. A. S. Rawat, A. Mazumdar, and S. Vishwanath, "On cooperative local repair in distributed storage," in Proc. IEEE Annu. Conf. Inf. Sci. Syst.(CISS), pp 1-5, Mar. 2014.
  12. D. R. Stinson, Cryptography: Theory and Practice, Chapman & Hall/CRC, 2005.
  13. W. C. Huffman and V. Pless, Fundamentals of error correcting codes, Cambridge, 2003.
  14. V. Cadambe and A. Mazumdar, "An upper bound on the size of locally recoverable codes," in Proc. IEEE Int. Symp. Network Coding, pp. 1-5, Jun. 2013.
  15. M. Grassl, Code Tables: Bounds on the parameters of various types of codes, Retrieved Aug., 25, 2015, from http://www.co detables.de/.