DOI QR코드

DOI QR Code

Modified Genetic Algorithm for Fast Beam Formation in Wireless Network

무선 메쉬 네트워크 환경에서 빠른 빔형성을 위한 개선된 유전알고리즘

  • Received : 2015.07.13
  • Accepted : 2015.09.08
  • Published : 2015.09.30

Abstract

This paper proposes a modified genetic algorithm that has the same beamforming performance and a fast convergence speed using general genetic algorithm in order to form a beam for the mobile node in a mesh network. The proposed beamforming genetic algorithm selects a part of chromosome a high fitness value in mating process to obtain fast convergence speed, and rest part of chromosome with longer fitness value in order to avoid local solution. Furthermore, the reference beam pattern with Gaussian shape reduces additional convergence speed. Simulation shows that the convergence speed of proposed algorithm improves 20% compared with that of conventional beamforming genetic algorithm.

본 논문에서는 메쉬 네트워크의 이동노드에 대해 기존의 유전알고리즘을 이용한 빔형성과 같은 성능을 가지면서 빠른 수렴속도를 가지고 지역해에 빠지지 않는 개선된 유전알고리즘을 제안한다. 제안한 빔형성 유전알고리즘은 빠른 수렴속도를 얻기 위해서 교배과정에서 적합도가 높은 염색체의 일정비율을 추출하고 지역해에 빠지는 것을 방지하기 위해 하위 염색체로 교배에 사용하였다. 그리고 적합도 측정용 빔형성의 기준 빔패턴을 가우시안 함수를 이용하여 수렴속도를 더욱 빠르게 하였다. 전산모의 실험을 통하여 제안한 빔형성 유전알고리즘이 기존의 빔형성 유전알고리즘 방식과 비교하여 약 20%의 빠른 수렴속도가 향상되었음을 보였다.

Keywords

References

  1. S. Park, C. Park, H. Kim, and J. Chung, "Beamforming power allocation method of multiple nodes with UCA for increasing SIR," J. KICS, vol. 40, no. 1, pp. 16-22, Jan. 2015. https://doi.org/10.7840/kics.2015.40.1.16
  2. I. Akylidiz and X. Wang, "A survey on wireless mesh networks," IEEE Commun. Mag., vol, 43, no. 9, pp. 23-30, Sept. 2005. https://doi.org/10.1109/MCOM.2005.1509968
  3. Y. Cho, H. Jeong, D. Kim, and K. Ryu, "Trajectory information-based routing protocol for mobile mesh router in wireless mesh networks," J. KICS, vol. 36, no. 11, pp. 912-923, Aug. 2011. https://doi.org/10.7840/KICS.2011.36A.11.912
  4. Y. Y. Bai, S. Xiao, C. Liu, and B. Z. Wang, "A hybrid IWO/PSO algorithm for pattern synthesis of conformal phased array," IEEE Trans. Antennas Propaga., vol. 61, no. 4, pp. 2328-2332, Apr. 2013. https://doi.org/10.1109/TAP.2012.2231936
  5. K. Chae and S. Yoon, "A transmission parameter optimization scheme based on genetic algorithm for dynamic spectrum access," J. KICS, vol. 38, no. 11, pp. 938-943, Nov. 2014.
  6. S. T. Van, G. Kwon, K. Hwang, J. Park, S. Kim, and D. Kim, "GA-enhanced dual-band aperiodic linear dipole array with low sidelobe level," J. KICS, vol. 37, no. 12, pp. 1296- 1092, Dec. 2012.
  7. J. Kim, D. Kim, S. Kim, H. Yang, C. Cheon, and Y. Chung, "Optimization of subarray configurations in linear array antenna using modified genetic algorithm," J. Korea Electromagnetic Eng. Soc., vol. 23, no. 2, pp. 187-195, Feb. 2012. https://doi.org/10.5515/KJKIEES.2012.23.2.187
  8. K. K. Yan and Y. Lu, "Sidelobe reduction in array-pattern synthesis using genetic algorithm," IEEE Trans. Antennas Propaga., vol. 45, no. 7, pp. 1117-1122, Jul. 1997. https://doi.org/10.1109/8.596902
  9. M. Srinivas and L. M. Patnaik, "Genetic algorithm : A survey," Computer, vol. 27, no. 6, pp. 17-26, Jun. 1994. https://doi.org/10.1109/2.294849
  10. B. Zhu, W. Cheng, L. Li, and L. Zhou, "Low sidelobe wide nulling for linear antenna array with an improved genetic algorithm assisted beamforming," in Proc. Int. Conf. IEEE Circuits Syst., vol. 2, pp. 953-957, Guilin, China, Jun. 2006.
  11. K. Hyun, K. Jung, and K. Eom, "Beam control method of multiple array antenna using the modified genetic algorithm," The Inst. Electron. Inf. Eng., vol. 44, no. 2, pp. 153-159, 2007.
  12. C. Seong, J. Lee, I. Han, H. Ryu, K. Lee, and D. Park, "Study on pattern synthesis of conformal array antenna using enhanced adaptive genetic algorithm," J. Korean Inst. Electromagnetic Eng. and Sci., vol. 25, no. 5, pp. 592-600, May 2011. https://doi.org/10.5515/KJKIEES.2014.25.5.592

Cited by

  1. Low Side-Lobe Beamforming Antenna for Earth Stations in Motion vol.31, pp.8, 2020, https://doi.org/10.5515/kjkiees.2020.31.8.005