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ABSTRACT. In this paper we study the problem of normal families of meromorphic func-
tions concerning shared values. Let F' be a family of meromorphic functions in the plane
domain D C C and n, k be two positive integers such that n > k£ 4+ 1, and let a,b be two
finite complex constants such that a # 0. Suppose that (1) f + a(f*)™ and g + a(g®)®
share b in D for every pair of functions f,g € F; (2) All zeros of f have multiplicity at
least k + 2 and all poles of f have multiplicity at least 2 for each f € F in D; (3) Zeros
of f®)(z) are not the b points of f(z) for each f € F in D. Then F is normal in D. And
some examples are provided to show the result is sharp.

1. Introduction and Main Results

In this paper, we denote by C the whole complex plane. A function f is called
meromorphic if it is analytic in a domain D C C except at possible isolated poles. A
function f is called normal if there exists a positive number M such that f#(z) < M

for all z € D, where f#(z) = % denotes the spherical derivative of f. For

a €C,set Ef(a) ={z € D: f(z) = a}. We say that two meromorphic functions f
and g share the value a provided that E¢(a) = E4(a) in D. When a = oo the zeros
of f —a mean the poles of f (see [4]). Let F be a family of meromorphic functions
in a domain D C C. We say that F' is normal in D if every sequence { f,,} C F con-
tains a subsequence which converges spherically uniformly on the compact subsets
of D (see [8,11]).

In 1992, W. Schwick [9] obtained a connection between normality criteria and
sharing values. He proved the theorem as follows.
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Theorem A. Let F be a family of meromorphic functions on a domain D and
a1, as, a3 be distinct complex numbers. If f and f' share ai,as,as for every f € F,
then F' is normal in D.

Since then many results in this direction have been obtained. In 2011, D. W.
Meng and P. C. Hu [7] proved the following normality criteria.

Theorem B. Take a positive integer k and a complex number a(# 0). Let F be
a family of meromorphic functions in a domain D C C such that each f € F has
only zeros of multiplicity at least k + 1. For each pair f,g € F, if ff*) and gg(¥)
share a, then F' is normal in D.

Recently, G. Datt and S. Kumar [4] obtained the following result.

Theorem C. Let F' be a family of meromorphic functions defined in a domain D
such that for each f € F satisfies the followings :

(1) Zeros of f(z) are of multiplicity at least 3 in D and poles of f(z) are of
multiplicity at least 2.

(2) Zeros of f'(z) are not the b points of f(z), where b is a non-zero constant.
If for each pair of functions f,g € F, f + (f')" and g+ (¢9')" share the value b, then
F is normal in D.

Let f be a meromorphic function in D € C and a € C — {0} and n(> 2), k are
two positive integers, we define

D(f) = f+a(f®)"

a non-linear differential polynomial. It is natural to ask whether Theorem C can be
improved by the idea of D(f) = f 4 a(f®*))". In this paper, we study the problem
and obtain the following result.

Theorem 1. Let F' be a family of meromorphic functions in the plane domain
D C C and n,k be two positive integers such that n > k + 1, and let a,b be two
finite complex constants such that a # 0. Suppose that

(1) Zeros of f have multiplicity at least k + 2 and poles of f have multiplicity
at least 2 for each f € F in D;

(2) Zeros of f*)(z) are not the b points of f(z) for each f € F in D.
If D(f) and D(g) share b in D for every pair of functions f,g € F, then F' is normal
in D.

Example 1. Let D ={z:|z] <1},n,k € Nand F = {f,(2)}, where

fn(z)=n**t zeD, n=1,2,....

Obviously, fo + (FSN)E+L = [n + (n(k + 1)1)k+1z*+1. So for each pair m,mn,
fn + (ﬁ(lk))’“rl and f,, + (f}(,f))k+1 share the value 0 in D, however, F fails to
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be normal in D since f# ( k+1\1/ﬁ> =

Example 1 shows that Theorem 1 is not valid when all zeros of f have multi-
plicity k£ 4 1, so the condition that f has only zeros with multiplicity k£ 4 2 is best
possible for Theorem 1.

2. Some Lemmas

In order to prove our theorems, we need the following preliminary results.

Suppose that f is non-constant and meromorphic and k is a positive integer.
Set M[f] = fro(f)™ --- (f*&)™ and vy = Eé?zonj, where ng,n1,...,n; are non-
negtive integers, then M|[f] is called a differential monomial of f, and ~u; the
degree of M|[f]. Suppose that M;[f] are differential monomials of f with degree
Y, (G = 1,...,n). Set Q[f] = ¥7_,a;(2)M;[f] and vg = mari<j<nyn,. Then
Q[f] is said to be a differential polynomial of f with degree g if the coefficients
a;(2)(j =1,...,n) satisfy T'(r,a;(z)) = S(r, f). If yas, = Ym, = -+ = Yu,,, then
Q[f] is called a homogeneous differential polynomial of f. In addition, we shall use
the following standard notations of Nevanlinna’s Theory and its some fundamental
results ( see [8,11]). In particular, S(r, f) = o(T(r, f)) (r — o0) except for a finite
linear measure of the set of the value r.

The following result is due to Pang and Zalcman [6] (cf. [2]).

Lemma 1.([2],[6]) Let F' be a family of meromorphic functions in the unit disc
A C C and let k be a positive integer. Suppose that all zeros of f have multiplicity
at least k for every f € F, and suppose that there exists a number A > 1 such
that | f*)(2)| < A whenever f(z) = 0. If F is not normal at zy € /A , then for any
0 < a <k, there exist

(1) a number r € (0,1),

(2) a sequence of complex numbers z,, — 2o, |zn| < 7,

(3) a sequence of functions f, € F,

(4) a sequence of positive numbers p, — 0

such that g,(&) = p,*fn(zn + pn&) converges locally uniformly (with respect to
spherical metric) to a non-constant meromorphic function g(§) on C, and moreover,
the zeros of g(&) are of multiplicity at least k, g*(€) < ¢*(0) = kA + 1.

Remark 1. In Lemma 1, if 0 < o < k, then the hypothesis of f*) can be dropped,
and kA + 1 can be replaced by an arbitrary positive number (see [2]).

Lemma 2.([3]) A normal function has order at most two. A normal entire function
is of exponential type, and thus has order at most one.

Lemma 3.([12]) Let f = g be a rational function and @ be non constant. Then
(f*)) oo < (f)oo — k, where k is a positive integer, (f)oo = deg(P) — deg(Q).

Lemma 4.([10]) Let f be a transcendental meromorphic function, and let a be a
nonzero finite complex number and n, k be two positive integers such that n > k+1,
then f + a(f*))" assumes every finite complex value infinitely often.
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Lemma 5. Let n,k be two positive integers such that n > k + 1, and let f be
a non-constant rational function such that all zeros of f have multiplicity at least
k+2 and poles (if exists) of f are of multiplicity at least 2, then D(f) = f+a(f*)"
has at least two distinct zeros.

Proof. We consider the following cases.
Case 1. D(f) = f + a(f®™)" has exactly one zero zy (say).

Case 1.1. f is a non-constant polynomial. it is easily obtained that D(f) =
[+ a(f¥)™ has zeros since all zeros of f have multiplicity at least k + 2. Suppose
that D(f) = f 4+ a(f*))" has exactly one zero zy with multiplicity [, then D(f) =
f+a(f*)" has the form D(f) = f + a(f*))* = A(z — 2)", where A is a non-zero
constant, [ is a positive integer. Obviously, [ > k + 2 since f has only zeros with
multiplicity at least k + 2. So

(21) DUN® = 1 +af(s9)"]"

= All=1)---(I—k+1)(z—z) "
On the other hand, the simple calculation implies that
@2) O = 1O +al(f)P = 1O 1@ (sV)].

where

Qi) = o ()" G 1)

o) R ) e

L otam (f(m)""“‘l (ﬂk))’“‘lf(zk),

and Q(f®)) is a homogeneous differential polynomial of f*) of degree n — 1. From
(2.1) and (2.2) we know that f(*) has exactly the same zero zg, so f has the same
zero zg and zg is the unique zero of f. Thus f has the form f(z) = Ag(z—20)?, where
Ay is non-zero constant and p is a positive integer such that p > k+2. Thus D(f) =
FHalfO) = Ao(z—20){1+a A5 [p(p—1) - (p— k+1)]" (2 — ) "~DP=*} hag
at least two distinct zeros since (n —1)p—nk > 1forn > k+1 and p > k+ 2. This
is a contradiction that our assumptions. Thus D(f) = f +a(f*))" has at least two
distinct zeros.

Case 1.2. f is a nonconstant rational function which is not a polynomial. Suppose
that D(f) = f + a(f*))" has exactly one zero 2o with multiplicity . So we deduce
that f has exactly one zero zp and then zy is the unique zero of f. Otherwise
f+a(f®)™ has at least two distinct zeros, which contradicts that our assumptions.
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Put
A(z — z)P
(2.3) f(z) = ,
(z—21)0 (2 — 29) % - (2 — 2)%
where A is a non-zero constant and ¢; > 2(: = 1,2,...,t),p are positive integers

such that p > k 4 2.
For brevity, we denote

at@tota=q22t
From (2.3), it follows that

Az = 20)"*g(2)
(z — 2Bk (z — z9) T2tk .. (7 — z,)ae+k’

(2.4) FP(2) =

where g(z) is a polynomial and cgt—1, ..., c1, co are constants. Then (2.3) and (2.4)
imply that (f)ee =p —q and (f*))s = p— k +deg(g(z)) — ¢ — kt, It is easy to see
that deg(g(z)) < kt by Lemma 3.

From (2.3) and (2.4), then

@5 D) = f+a(r®)

Ap1(2) + aA™po(2)
(2 — 2@ FR) (2 — zp)nla2th) .. (2 — z)nlar+k)”

where
p1(2) = (2 — 20)P(z — 21) P DBATE (5 _ gy Dazdnk ()i Daetnk
and
pa(z) = (2 = 20)"P"Mg" ().
It follows that deg(pi(z)) = (n — 1)q + nkt and deg(p2(2)) = n(p — k) +
ndeg(g(z)). We can claim that

(2.6) deg(p1(z)) # deg(p2(2))-

If p < g+ k, then deg(pi(2)) — deg(p2(2)) = (n — 1)(¢ — p) + nk > 1, which
implies that deg(p1(z)) # deg(p2(2)).

If p > g+ k, then deg(g(z)) = kt. Hence deg(p2(z)) — deg(p1(2)) = (n—1)(p —
q) — nk > 1, which also yields that deg(p1(z)) # deg(p2(z)), as claimed.

Since n(p — k) >p forn > k+1 and p > k + 2. It follows from (2.5) that

@1 D) = fra(r®)

Az — 20)Pg1(2)
(Z — zl)n(q1+k)(z — zz)n(th—&-k) .. (Z _ Zt)n(qt"’_k) ,
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where

(n—1)g2+nk (n—1)qi+nk

g1(z) = (z—2) VBT — 2

) (2 - 2)
+a A" (2 — z)" PRI (2),

By the assumption that f + a(f®*))" has exactly one zero z, with multiply I, we
deduce from (2.5) that

28) D) = fra(s®)

C(z — z)!
(Z — Zl)n(lZ1+k)(Z — 22)”(‘12+k) . (Z _ Zt)n(th+k) .

Hence (2.7) and (2.8) mean that
(2.9) C(z—20)' = Az — c0)’g1(2),

where C' is a non-zero constant.

Case 1.2.1. [ > p. It follows from (2.9) that g; has a zero zp and then (z —
zp)(Datnk () (n=Daxtnk o (p o) (r=Daetnk hag g zero zo, which leads to
a contradiction.

Case 1.2.2. | = p. In view of (2.9), one has that

(2.10) hi(z) + ha2(z) = %

where

hl(z) _ (Z _ Zl)(n—l)q1+nk(z o Zg)("_l)q2+nk L (Z _ Zt)(n—l)m-i-nk

and
hao(2) = aA™ 1 (z — )" PRI =Pgn (%),

We easily obtain from (2.10) that deg(h1) = deg(hz). On the other hand, (2.6)
and the definitions of py(2), p2(2), g1, h1 and he yield that deg(hy) # deg(hs). We
thus have a contradiction.

Case 2. Let D(f) has no zeros. it is easily obtained that f is not a polynomial,
otherwise D(f) becomes a polynomial of degree at least 4. Hence f is a non-
polynomial rational function. Now putting { = 0 in (2.8) and proceeding as case
1.2, we thus arrive at a contradiction.

The proof is complete. O

Lemma 6. Let n,k be two positive integers such that n > k + 1, and let f be a
non-constant rational function with following properties :

(1) Zeros of f have multiplicity at least k + 2 and poles (if exists) of f are of
multiplicity at least 2.
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(2) Zeros of f¥) are not the b points of f, where b is a non-zero constant. then
D(f) — b has at least two distinct zeros.

Proof. We consider the following cases.
Case 1. D(f) — b has exactly one zero zy (say) with multiplicity {.

Case 1.1. f is a non-constant polynomial. Tt is easily obtained that D(f) — b has
zeros since all zeros of f have multiplicity at least k + 2. Suppose that D(f) — b
has exactly one zero zy with multiplicity [, then D(f) — b has the form D(f) —b =
A(z—2p)!, where A is a non-zero constant, [ is a positive integer. Obviously, | > k+2
since f has only zeros with multiplicity at least k + 2. So

(D(f))(k) — f(k) +a [(f(@) } =Al(l—=1)---(I-k+1)(z— Zo)l—k'
On the other hand, the simple calculation implies that
(D())® = fF) 4 q[(fRy*) = fk) [1 40 (f<k>>] ’

where @ ( f (k)) is given in Case 1.1 of lemma 5. This shows that zg is only zero of
(D(f))®). Note that a zero of f*¥) is also a zero of (D(f))*¥) = f®) [1+Q (f®)]
and f(*) is a nonconstant function. We thus conclude that z is a zero of f*), which
yields that f(z9) = b. This is a contradiction that our assumptions. Thus D(f) —b
has at least two distinct zeros.

Case 1.2. f is a nonconstant rational function which is not a polynomial. By the
hypothesis, we may put

A(Z — 041)7"1 (z — a2)p2 - (Z _ as)Ps

2.11 =

( ) f(z) (Z*Zl)ql(Z7ZQ)q2"'(Z*Zt)qt

where A is a non-zero constant, p;(i = 1,2,...,s),¢;(j = 1,2,...,t) are positive
integers such that p; > k+2(i=1,2,...,s) and ¢; > 2(j = 1,2,...,1).

For brevity, we denote
S

p=> pi>(k+2)s, g=)Y g >2t
i=1

From (2.11), it follows that

Az — al)pl—k(z _ aZ)pz—k‘ (2= as)ps—kgl(z)

(k) -
212) M) = (2 — 20) 0 (7 — 2g)aath . (5 — zp)ath

where ¢1(2) is a polynomial and ¢g¢—1,...,c1,¢o are constants. Then (2.11) and
(2.12) imply that (f)ee = p — ¢ and (f®)o = p — ks + deg(g(z)) — ¢ — kt, By
Lemma 3, it is easy to see that

(2.13) deg(g1(2)) < k(s +t—1).
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From (2.11) and (2.12), then

f+a (f(k))n

(2 =00 (s = 4o -+ (2 = ay) g 2)
= Rz ) @) (s — 2 G

(2.14) D(f)

where g(z) = ¢g7'(2) is a polynomial and

(2.15) deg(g(z)) < max{(n — 1)q + nkt, (n — 1)p — nks + ndeg(g1(2))}-

Noting that D(f) — b has exactly one zero zy with multiplicity /, from (2.14) we
have

(216) D(f) = f+a(r®)

B(z — z)!
(z — Zl)"(Q1+k) (Z — ZQ)VL(’IT'Fk) e (z — Zt)"(‘lt+k) ’

= b+

where B is a non-zero number.
It follows from (2.14) and (2.16) that

(z— 1)z — )27t (2 — )P Ry (2)
(2 — zp) M@tk H1 (5 — zo)nla2tk)+1 .o (7 — 5 )n(qth)+1

(2.17) (D(f)) =

and

(2 — 20)' " tha(2)
(z — z)M@FR)F1(5 — zo)nleztR)+1 ... (7 — g )n(@+k)+17

(2.18) (D(f))" =

where hi(z), ha(z) are polynomials. Both (2.14) and (2.17) imply that (D(f))ec =
p+deg(g(z)) —ng—nkt and ((D(f)) )oo = p—s+deg(hi(z)) —ng—nkt—t. Lemma
3 tells us that ((D(f)) oo < (D(f))oo — 1, then

(2.19) deg(hi(2)) <s+t—1+deg(g(z)) =s+t—1+ndeg(g1(2)).
Similarly(2.16) and (2.18) yields that
(2.20) deg(ho(2)) < 't.

Since «; # 2o for i = 1,2,...,s, it follows from (2.17) and (2.18) that p — s <
deg(h2(2)) < t, which implies that p < s+t < 5 + 2. One can deduce that

(2.21) p <gq.

Blow we divided into the following two cases again.

Case 1.2.1. | # nq + nkt. It follows from (2.14) that

(2.22) ng + nkt < p+ deg(g(z)).
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If deg(g(z)) < (n — 1)g + nkt, we thus from (2.22) obtain that ng + nkt <
p+ (n — 1)q + nkt, which implies that ¢ < p < ¢ by (2.21). This is impossible.

If deg(g(z)) < (n — 1)p — nks + ndeg(g1(z)), since deg(g1(2)) < k(s +t—1),
hence ng + nkt < (n —1)p —nks + 4+nk(s+t—1), wehave g <p—1<qg—1 by
(2.21). We thus arrive at a contradiction.

Case 1.2.2. | = ng + nkt. It is obtained from (2.17) and (2.18) that
(2.23) I —1<deg(hi(2)) <s+t—1+deg(g(2)).

If deg(g(2)) < (n—1)g+nkt, we thus from (2.23) obtain that [ < s+t+deg(g(z)),
which implies that ng+nkt < s+t+(n—1)g+nkt. We have ¢ < s+t < ﬁ—i—% <
T3 + 4 < g by (2.21). This is impossible.

If deg(g(2)) < (n— 1)p — nks + ndeg(g1(2)) < (n— 1)p — nks + nk(s +t —1).
Since deg(g1(2)) < k(s+t—1) and | = ng+nkt, hence (2.23) implies that ng+nkt <
(n—1)p—nks+ +nk(s+t—1), we have g < p—1< ¢g—1by (2.21). Thisis a
contradiction.

Case 2. Let D(f) — b has no zero. Then f can not be a polynomial, otherwise
D(f) becomes a polynomial of degree at least 4. Hence f is non polynomial rational
function. Now putting { = 0 in (2.16) and proceeding as case 1.2 of Lemma 6, we
have a contradiction. The proof of Lemma 6 is completed. a

3. Proof of Theorem

Suppose that F is not normal in D, then there exists at least one point zy such that
F is not normal at the point z5. Without loss of generality we assume that zg = 0
and D = A. We shall consider two cases.

Case 1. b = 0. Recall that all zeros of f have multiplicity at least k + 2, then,
by Lemma 1, there exist a sequence points z; — 0(j — 00); a sequence of positive
numbers p;, p; — 0 and a sequence of functions f;, f; € F such that g;(§) =

nk
p;mfj(zj + p;&) — g(&) locally uniformly with respect to spherical metric on
C, where g(§) is a non-constant meromorphic function and all zeros of g(£) have
multiplicity at least k + 2.

From the above, we obtain

__k_
(3.1) g = p; TR g®),

and
P;"Lfi [fj ta (f](k)yq =g ta (g§k))n —g+ta (g(k)>n

also locally uniformly with respect to the spherical metric, that is,

_ _nk

(3.2) p; "' [D(f;)] = D(g;) — D(9)
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also locally uniformly with respect to the spherical metric.

If D(g9) = g+a(g™)™ = 0, then g clearly has no poles and is not any polynomial
with order at least k 4 2, so g is a transcendental entire function. By Lemma 2, g
is of exponential type. Noting that g # 0, then g has the form g(¢) = e**9¢, where
c(c #0),d are two constants. Hence

ec§+d +a [ec§+d]n _ ec§+d |:1 + acnke(n—l)(c§+d):| =0.

So we get e(n=1)(ct+d) = _aclnk' This is a contradiction since n > k + 1 > 2.

Since g is a non-constant meromorphic function, by Lemmas 4 and 5, we deduce
that D(g) = g + a(g™)™ has at least two distinct zeros.

On the other hand, we conclude that D(g) = g + a(¢*))™ has just a unique
7Z€ero.

Suppose that there exist two distinct zeros & and & and choose §(6 > 0) small
enough such that D(&,6) () D(&5,6) = 0, where D(&,6) = {€ : |€ — &| < §} and

D(&5,0) = {€: [ — &l < d}.
From (3.1) and (3.2), by Hurwitz’s theorem, there exist points &; € D(&,9),
§r € D(&G,6) such that for sufficiently large j

D(fj(zj + pi&))) = fi(zj + p;&5) +a [fy(k)(zj + pjfj)r =9
D(f3(z + ps€)) = fi(zs + pi€)) +a [ 110z + s8] =0,

By the hypothesis that for each pair of functions f and g in F, D(f) and D(g)
share 0, we know that for any positive integer m

D(fm(z; + pi&;)) = fm(z5 + ps&5) +a [fr(r’f)(zj + ijj)r =0,
D{fn(z5+ i) = funlzs + 04€)) +a [f 5+ p367)] " = 0.
Fix m, take j — oo, and note z; + p;§; — 0, z; + p;&; — 0, then
D(fn(0)) = £ (0) +a (£7) " (0) = 0.
Since the zeros of D(f,) = fn + a(ﬂ%))" has no accumulation point, so

zj+pi& =0, 2 +p;&; =0.

Hence

which contradicts the fact that &; € D(&o,9), & € D(&5,9) and D(&p,d) () D(&5,6) =
0. So g+ a(¢™)™ has just a unique zero. This contradicts the fact that
D(g) = g + a(¢g™)™ has at least two distinct zeros.
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Case 2. b # 0. By Lemma 1 again, there exist a sequence of points z; — 0(j — 0);
a sequence of positive numbers p;, p; — 0 and a sequence of functions f;, f; € F
such that g;(§) = fi(z; + p;&) — g(§) locally uniformly with respect to spherical
metric on C, where g(£) is a non-constant meromorphic function. Moreover g is of
order of at most 2 and only zeros of g have multiplicity at least k + 2 and poles of
g have multiplicity at least 2.

From the above discussion, we have

(33)  D(fi(z +p;8) —b=D(g;(§)) — D(9(§)) —b as j— o0

also locally uniformly with respect to the spherical metric.
Now we can conclude that : if g(*)(&) = 0 then g(&) # b. Suppose that
g(&) = b, then by Hurwitzs theorem, there exists {; — & for j — oo such that

9(&) = fi(z + ps€&;) = b. Tt follows from g*¥)(€o) = 0 that i) (&) = 0, which
implies p?f;k)(zj + p;&;) = 0. We thus have f;k)(zj + p;€;) = 0. By condition of
theorem 1, we deduce that f;(z;+p;&;) # b, which contradicts that f;(z;+p;&;) = b.

If D(g(€)) =b. The argument in this case is completely analogous to the proof
of D(g(¢)) = g(¢) + a(g™)™(¢) = 0 and then we have a contradiction. So we omit
its proof.

We derive that D(g(£)) — b has at least two zeros by Lemmas 4 and 6 since g is
a non-constant meromorphic function.

On the other hand, we can claim that D(g(§)) — b has just a unique zero.
Suppose that there exist two distinct zeros & and &} and choose §(6 > 0) small
enough such that D(&o,0) (N D(&5,0) = 0, where D(&,d) = {£ : | — &l < 0} and
D(g;.6) = {¢ 1 € — &1 < o).

By (3.3) and Hurwitz's theorem, there exist points §; € D(o,6), £ € D(&5,6)
such that for sufficiently large j

D(f;(zj + pj&;)) —b =0,
D(fi(z; + p;&;)) —b=0.

By the hypothesis that for each pair of functions f and ¢ in F, D(f) and D(g)
share b, we know that for any positive integer m

D(fm(z; + pj&;)) — b=
D(fm(zj + pjg;‘)) —b=0.

Fix m, take j — oo, and note z; + p;&; — 0,2; + p;&; — 0, then
D(fm(0)) =b=0.
Since the zeros of D(f,,) — b has no accumulation point, so

zj+ 06 =0, z+p& =0
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Hence

Z
Pi

This contradicts the fact that {; € D(&,0), §; € D(&;,9) and D(§p,6) () D(§5,6) =

0. So a(¢™)™ — b has just a unique zero, which contradicts that D(g) — b has at
least two zeros. This proves the Theorem 1. O
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