KYUNGPOOK Math. J. 55(2015), 641-652 http://dx.doi.org/10.5666/KMJ.2015.55.3.641 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

The Normality of Meromorphic Functions with Multiple Zeros and Poles Concerning Sharing Values

WANG YOU-MING

Department of Applied Mathematics, College of Science, Hunan Agricultural University, ChangSha 410128, P. R. China e-mail: wangym2002@163.com

ABSTRACT. In this paper we study the problem of normal families of meromorphic functions concerning shared values. Let F be a family of meromorphic functions in the plane domain $D \subseteq \mathbb{C}$ and n, k be two positive integers such that $n \geq k + 1$, and let a, b be two finite complex constants such that $a \neq 0$. Suppose that (1) $f + a(f^{(k)})^n$ and $g + a(g^{(k)})^n$ share b in D for every pair of functions $f, g \in F$; (2) All zeros of f have multiplicity at least k + 2 and all poles of f have multiplicity at least 2 for each $f \in F$ in D; (3) Zeros of $f^{(k)}(z)$ are not the b points of f(z) for each $f \in F$ in D. Then F is normal in D. And some examples are provided to show the result is sharp.

1. Introduction and Main Results

In this paper, we denote by \mathbb{C} the whole complex plane. A function f is called meromorphic if it is analytic in a domain $D \subset \mathbb{C}$ except at possible isolated poles. A function f is called normal if there exists a positive number M such that $f^{\sharp}(z) \leq M$ for all $z \in D$, where $f^{\sharp}(z) = \frac{|f'(z)|}{1+|f(z)|^2}$ denotes the spherical derivative of f. For $a \in \mathbb{C}$, set $\overline{E}_f(a) = \{z \in D : f(z) = a\}$. We say that two meromorphic functions fand g share the value a provided that $\overline{E}_f(a) = \overline{E}_g(a)$ in D. When $a = \infty$ the zeros of f - a mean the poles of f (see [4]). Let F be a family of meromorphic functions in a domain $D \subseteq \mathbb{C}$. We say that F is normal in D if every sequence $\{f_n\} \subseteq F$ contains a subsequence which converges spherically uniformly on the compact subsets of D (see [8,11]).

In 1992, W. Schwick [9] obtained a connection between normality criteria and sharing values. He proved the theorem as follows.

Received October 22, 2013; accepted December 13, 2013.

²⁰¹⁰ Mathematics Subject Classification: 30D35, 30D45.

Key words and phrases: meromorphic functions, shared value, normal family.

Theorem A. Let F be a family of meromorphic functions on a domain D and a_1, a_2, a_3 be distinct complex numbers. If f and f' share a_1, a_2, a_3 for every $f \in F$, then F is normal in D.

Since then many results in this direction have been obtained. In 2011, D. W. Meng and P. C. Hu [7] proved the following normality criteria.

Theorem B. Take a positive integer k and a complex number $a \neq 0$. Let F be a family of meromorphic functions in a domain $D \subset \mathbb{C}$ such that each $f \in F$ has only zeros of multiplicity at least k + 1. For each pair $f, g \in F$, if $ff^{(k)}$ and $gg^{(k)}$ share a, then F is normal in D.

Recently, G. Datt and S. Kumar [4] obtained the following result.

Theorem C. Let *F* be a family of meromorphic functions defined in a domain *D* such that for each $f \in F$ satisfies the followings :

(1) Zeros of f(z) are of multiplicity at least 3 in D and poles of f(z) are of multiplicity at least 2.

(2) Zeros of f'(z) are not the *b* points of f(z), where *b* is a non-zero constant. If for each pair of functions $f, g \in F$, $f + (f')^n$ and $g + (g')^n$ share the value *b*, then *F* is normal in *D*.

Let f be a meromorphic function in $D \subset \mathbb{C}$ and $a \in \mathbb{C} - \{0\}$ and $n(\geq 2), k$ are two positive integers, we define

$$D(f) = f + a(f^{(k)})^n$$

a non-linear differential polynomial. It is natural to ask whether Theorem C can be improved by the idea of $D(f) = f + a(f^{(k)})^n$. In this paper, we study the problem and obtain the following result.

Theorem 1. Let F be a family of meromorphic functions in the plane domain $D \subseteq \mathbb{C}$ and n, k be two positive integers such that $n \geq k + 1$, and let a, b be two finite complex constants such that $a \neq 0$. Suppose that

(1) Zeros of f have multiplicity at least k + 2 and poles of f have multiplicity at least 2 for each $f \in F$ in D;

(2) Zeros of $f^{(k)}(z)$ are not the *b* points of f(z) for each $f \in F$ in *D*. If D(f) and D(g) share *b* in *D* for every pair of functions $f, g \in F$, then *F* is normal in *D*.

Example 1. Let $D = \{z : |z| < 1\}, n, k \in \mathbb{N} \text{ and } F = \{f_n(z)\}, \text{ where }$

$$f_n(z) = nz^{k+1}, \quad z \in D, \quad n = 1, 2, \dots$$

Obviously, $f_n + (f_n^{(k)})^{k+1} = [n + (n(k+1)!)^{k+1}]z^{k+1}$. So for each pair $m, n, f_n + (f_n^{(k)})^{k+1}$ and $f_m + (f_m^{(k)})^{k+1}$ share the value 0 in D, however, F fails to

be normal in D since $f_n^{\sharp}\left(\frac{1}{k+\sqrt[k]{n}}\right) = \frac{k+\sqrt[k]{n}(k+1)}{2} \to \infty$ as $n \to \infty$.

Example 1 shows that Theorem 1 is not valid when all zeros of f have multiplicity k + 1, so the condition that f has only zeros with multiplicity k + 2 is best possible for Theorem 1.

2. Some Lemmas

In order to prove our theorems, we need the following preliminary results.

Suppose that f is non-constant and meromorphic and k is a positive integer. Set $M[f] = f^{n_0}(f')^{n_1} \cdots (f^{(k))})^{n_k}$ and $\gamma_M = \sum_{j=0}^k n_j$, where n_0, n_1, \ldots, n_k are nonnegtive integers, then M[f] is called a differential monomial of f, and γ_M the degree of M[f]. Suppose that $M_j[f]$ are differential monomials of f with degree $\gamma_{M_j}(j = 1, \ldots, n)$. Set $Q[f] = \sum_{j=1}^n a_j(z)M_j[f]$ and $\gamma_Q = \max_{1 \le j \le n} \gamma_{M_j}$. Then Q[f] is said to be a differential polynomial of f with degree γ_Q if the coefficients $a_j(z)(j = 1, \ldots, n)$ satisfy $T(r, a_j(z)) = S(r, f)$. If $\gamma_{M_1} = \gamma_{M_2} = \cdots = \gamma_{M_n}$, then Q[f] is called a homogeneous differential polynomial of f. In addition, we shall use the following standard notations of Nevanlinna's Theory and its some fundamental results (see [8,11]). In particular, S(r, f) = o(T(r, f)) $(r \to \infty)$ except for a finite linear measure of the set of the value r.

The following result is due to Pang and Zalcman [6] (cf. [2]).

Lemma 1.([2],[6]) Let F be a family of meromorphic functions in the unit disc $\Delta \subseteq \mathbb{C}$ and let k be a positive integer. Suppose that all zeros of f have multiplicity at least k for every $f \in F$, and suppose that there exists a number $A \ge 1$ such that $|f^{(k)}(z)| \le A$ whenever f(z) = 0. If F is not normal at $z_0 \in \Delta$, then for any $0 \le \alpha \le k$, there exist

(1) a number $r \in (0, 1)$,

(2) a sequence of complex numbers $z_n \to z_0, |z_n| \le r$,

(3) a sequence of functions $f_n \in F$,

(4) a sequence of positive numbers $\rho_n \to 0$

such that $g_n(\xi) = \rho_n^{-\alpha} f_n(z_n + \rho_n \xi)$ converges locally uniformly (with respect to spherical metric) to a non-constant meromorphic function $g(\xi)$ on \mathbb{C} , and moreover, the zeros of $g(\xi)$ are of multiplicity at least $k, g^{\sharp}(\xi) \leq g^{\sharp}(0) = kA + 1$.

Remark 1. In Lemma 1, if $0 \le \alpha < k$, then the hypothesis of $f^{(k)}$ can be dropped, and kA + 1 can be replaced by an arbitrary positive number (see [2]).

Lemma 2.([3]) A normal function has order at most two. A normal entire function is of exponential type, and thus has order at most one.

Lemma 3.([12]) Let $f = \frac{P}{Q}$ be a rational function and Q be non constant. Then $(f^{(k)})_{\infty} \leq (f)_{\infty} - k$, where k is a positive integer, $(f)_{\infty} = \deg(P) - \deg(Q)$.

Lemma 4.([10]) Let f be a transcendental meromorphic function, and let a be a nonzero finite complex number and n, k be two positive integers such that $n \ge k+1$, then $f + a(f^{(k)})^n$ assumes every finite complex value infinitely often.

Lemma 5. Let n, k be two positive integers such that $n \ge k+1$, and let f be a non-constant rational function such that all zeros of f have multiplicity at least k+2 and poles (if exists) of f are of multiplicity at least 2, then $D(f) = f + a(f^{(k)})^n$ has at least two distinct zeros.

Proof. We consider the following cases.

Case 1. $D(f) = f + a(f^{(k)})^n$ has exactly one zero z_0 (say).

Case 1.1. f is a non-constant polynomial. it is easily obtained that $D(f) = f + a(f^{(k)})^n$ has zeros since all zeros of f have multiplicity at least k + 2. Suppose that $D(f) = f + a(f^{(k)})^n$ has exactly one zero z_0 with multiplicity l, then $D(f) = f + a(f^{(k)})^n$ has the form $D(f) = f + a(f^{(k)})^n = A(z - z_0)^l$, where A is a non-zero constant, l is a positive integer. Obviously, $l \ge k + 2$ since f has only zeros with multiplicity at least k + 2. So

(2.1)
$$(D(f))^{(k)} = f^{(k)} + a \left[\left(f^{(k)} \right)^n \right]^{(k)} \\ = Al(l-1) \cdots (l-k+1)(z-z_0)^{l-k}.$$

On the other hand, the simple calculation implies that

(2.2)
$$(D(f))^{(k)} = f^{(k)} + a[(f^{(k)})^n]^{(k)} = f^{(k)} \left[1 + Q\left(f^{(k)}\right) \right],$$

where

$$Q\left(f^{(k)}\right) = a\left(f^{(k)}\right)^{n-k-1} \frac{n!}{(n-k)!} \left(f^{(k+1)}\right)^{k} + a\left(f^{(k)}\right)^{n-k-1} \frac{C_{n}^{2}n!}{(n-k+1)!} \left(f^{(k+1)}\right)^{k-2} f^{(k+2)} + \dots + an\left(f^{(k)}\right)^{n-k-1} \left(f^{(k)}\right)^{k-1} f^{(2k)},$$

and $Q(f^{(k)})$ is a homogeneous differential polynomial of $f^{(k)}$ of degree n-1. From (2.1) and (2.2) we know that $f^{(k)}$ has exactly the same zero z_0 , so f has the same zero z_0 and z_0 is the unique zero of f. Thus f has the form $f(z) = A_0(z-z_0)^p$, where A_0 is non-zero constant and p is a positive integer such that $p \ge k+2$. Thus $D(f) = f + a(f^{(k)})^n = A_0(z-z_0)^p \{1 + aA_0^{n-1}[p(p-1)\cdots(p-k+1)]^n(z-z_0)^{(n-1)p-nk}\}$ has at least two distinct zeros since $(n-1)p-nk \ge 1$ for $n \ge k+1$ and $p \ge k+2$. This is a contradiction that our assumptions. Thus $D(f) = f + a(f^{(k)})^n$ has at least two distinct zeros.

Case 1.2. f is a nonconstant rational function which is not a polynomial. Suppose that $D(f) = f + a(f^{(k)})^n$ has exactly one zero z_0 with multiplicity l. So we deduce that f has exactly one zero z_0 and then z_0 is the unique zero of f. Otherwise $f + a(f^{(k)})^n$ has at least two distinct zeros, which contradicts that our assumptions.

Put

(2.3)
$$f(z) = \frac{A(z-z_0)^p}{(z-z_1)^{q_1}(z-z_2)^{q_2}\cdots(z-z_t)^{q_t}},$$

where A is a non-zero constant and $q_i \ge 2(i = 1, 2, ..., t), p$ are positive integers such that $p \ge k + 2$.

For brevity, we denote

$$q_1 + q_2 + \dots + q_t = q \ge 2t.$$

From (2.3), it follows that

(2.4)
$$f^{(k)}(z) = \frac{A(z-z_0)^{p-k}g(z)}{(z-z_1)^{q_1+k}(z-z_2)^{q_2+k}\cdots(z-z_t)^{q_t+k}},$$

where g(z) is a polynomial and $c_{kt-1}, \ldots, c_1, c_0$ are constants. Then (2.3) and (2.4) imply that $(f)_{\infty} = p - q$ and $(f^{(k)})_{\infty} = p - k + \deg(g(z)) - q - kt$, It is easy to see that $\deg(g(z)) \leq kt$ by Lemma 3.

From (2.3) and (2.4), then

(2.5)
$$D(f) = f + a \left(f^{(k)}\right)^n$$
$$= \frac{Ap_1(z) + aA^n p_2(z)}{(z - z_1)^{n(q_1 + k)} (z - z_2)^{n(q_2 + k)} \cdots (z - z_t)^{n(q_t + k)}},$$

where

$$p_1(z) = (z - z_0)^p (z - z_1)^{(n-1)q_1 + nk} (z - z_2)^{(n-1)q_2 + nk} \cdots (z - z_t)^{(n-1)q_t + nk}$$

and

$$p_2(z) = (z - z_0)^{n(p-k)} g^n(z).$$

It follows that $\deg(p_1(z)) = (n-1)q + nkt$ and $\deg(p_2(z)) = n(p-k) + n \deg(g(z))$. We can claim that

(2.6)
$$\deg(p_1(z)) \neq \deg(p_2(z)).$$

If $p \le q + k$, then $\deg(p_1(z)) - \deg(p_2(z)) \ge (n-1)(q-p) + nk \ge 1$, which implies that $\deg(p_1(z)) \ne \deg(p_2(z))$.

If p > q + k, then $\deg(g(z)) = kt$. Hence $\deg(p_2(z)) - \deg(p_1(z)) = (n-1)(p-q) - nk \ge 1$, which also yields that $\deg(p_1(z)) \ne \deg(p_2(z))$, as claimed.

Since n(p-k) > p for $n \ge k+1$ and $p \ge k+2$. It follows from (2.5) that

(2.7)
$$D(f) = f + a \left(f^{(k)} \right)^n$$
$$= \frac{A(z-z_0)^p g_1(z)}{(z-z_1)^{n(q_1+k)} (z-z_2)^{n(q_2+k)} \cdots (z-z_t)^{n(q_t+k)}},$$

You-Ming Wang

where

$$g_1(z) = (z - z_1)^{(n-1)q_1 + nk} (z - z_2)^{(n-1)q_2 + nk} \cdots (z - z_t)^{(n-1)q_t + nk} + aA^{n-1} (z - z_0)^{n(p-k)-p} g^n(z).$$

By the assumption that $f + a(f^{(k)})^n$ has exactly one zero z_0 with multiply l, we deduce from (2.5) that

(2.8)
$$D(f) = f + a \left(f^{(k)}\right)^n$$
$$= \frac{C(z-z_0)^l}{(z-z_1)^{n(q_1+k)}(z-z_2)^{n(q_2+k)}\cdots(z-z_t)^{n(q_t+k)}}.$$

Hence (2.7) and (2.8) mean that

(2.9)
$$C(z-z_0)^l \equiv A(z-c_0)^p g_1(z),$$

where C is a non-zero constant.

Case 1.2.1. l > p. It follows from (2.9) that g_1 has a zero z_0 and then $(z - z_1)^{(n-1)q_1+nk}(z-z_2)^{(n-1)q_2+nk}\cdots(z-z_t)^{(n-1)q_t+nk}$ has a zero z_0 , which leads to a contradiction.

Case 1.2.2. l = p. In view of (2.9), one has that

(2.10)
$$h_1(z) + h_2(z) \equiv \frac{C}{A},$$

where

$$h_1(z) = (z - z_1)^{(n-1)q_1 + nk} (z - z_2)^{(n-1)q_2 + nk} \cdots (z - z_t)^{(n-1)q_t + nk}$$

and

$$h_2(z) = aA^{n-1}(z-z_0)^{n(p-k)-p}g^n(z).$$

We easily obtain from (2.10) that $\deg(h_1) = \deg(h_2)$. On the other hand, (2.6) and the definitions of $p_1(z), p_2(z), g_1, h_1$ and h_2 yield that $\deg(h_1) \neq \deg(h_2)$. We thus have a contradiction.

Case 2. Let D(f) has no zeros. it is easily obtained that f is not a polynomial, otherwise D(f) becomes a polynomial of degree at least 4. Hence f is a non-polynomial rational function. Now putting l = 0 in (2.8) and proceeding as case 1.2, we thus arrive at a contradiction.

The proof is complete.

Lemma 6. Let n, k be two positive integers such that $n \ge k+1$, and let f be a non-constant rational function with following properties :

(1) Zeros of f have multiplicity at least k + 2 and poles (if exists) of f are of multiplicity at least 2.

(2) Zeros of $f^{(k)}$ are not the *b* points of *f*, where *b* is a non-zero constant. then D(f) - b has at least two distinct zeros.

Proof. We consider the following cases.

Case 1. D(f) - b has exactly one zero z_0 (say) with multiplicity l.

Case 1.1. f is a non-constant polynomial. It is easily obtained that D(f) - b has zeros since all zeros of f have multiplicity at least k + 2. Suppose that D(f) - b has exactly one zero z_0 with multiplicity l, then D(f) - b has the form $D(f) - b = A(z-z_0)^l$, where A is a non-zero constant, l is a positive integer. Obviously, $l \ge k+2$ since f has only zeros with multiplicity at least k + 2. So

$$(D(f))^{(k)} = f^{(k)} + a \left[\left(f^{(k)} \right)^n \right]^{(k)} = Al(l-1)\cdots(l-k+1)(z-z_0)^{l-k}.$$

On the other hand, the simple calculation implies that

$$(D(f))^{(k)} = f^{(k)} + a[(f^{(k)})^n]^{(k)} = f^{(k)} \left[1 + Q\left(f^{(k)}\right) \right],$$

where $Q(f^{(k)})$ is given in Case 1.1 of lemma 5. This shows that z_0 is only zero of $(D(f))^{(k)}$. Note that a zero of $f^{(k)}$ is also a zero of $(D(f))^{(k)} = f^{(k)} [1 + Q(f^{(k)})]$ and $f^{(k)}$ is a nonconstant function. We thus conclude that z_0 is a zero of $f^{(k)}$, which yields that $f(z_0) = b$. This is a contradiction that our assumptions. Thus D(f) - b has at least two distinct zeros.

Case 1.2. f is a nonconstant rational function which is not a polynomial. By the hypothesis, we may put

(2.11)
$$f(z) = \frac{A(z-\alpha_1)^{p_1}(z-\alpha_2)^{p_2}\cdots(z-\alpha_s)^{p_s}}{(z-z_1)^{q_1}(z-z_2)^{q_2}\cdots(z-z_t)^{q_t}},$$

where A is a non-zero constant, $p_i(i = 1, 2, ..., s), q_j(j = 1, 2, ..., t)$ are positive integers such that $p_i \ge k + 2(i = 1, 2, ..., s)$ and $q_j \ge 2(j = 1, 2, ..., t)$.

For brevity, we denote

$$p = \sum_{i=1}^{s} p_i \ge (k+2)s, \ q = \sum_{j=1}^{t} q_j \ge 2t.$$

From (2.11), it follows that

(2.12)
$$f^{(k)}(z) = \frac{A(z-\alpha_1)^{p_1-k}(z-\alpha_2)^{p_2-k}\cdots(z-\alpha_s)^{p_s-k}g_1(z)}{(z-z_1)^{q_1+k}(z-z_2)^{q_2+k}\cdots(z-z_t)^{q_t+k}},$$

where $g_1(z)$ is a polynomial and $c_{kt-1}, \ldots, c_1, c_0$ are constants. Then (2.11) and (2.12) imply that $(f)_{\infty} = p - q$ and $(f^{(k)})_{\infty} = p - ks + \deg(g(z)) - q - kt$, By Lemma 3, it is easy to see that

(2.13)
$$\deg(g_1(z)) \le k(s+t-1).$$

From (2.11) and (2.12), then

(2.14)
$$D(f) = f + a \left(f^{(k)}\right)^n$$
$$= \frac{(z - \alpha_1)^{p_1} (z - \alpha_2)^{p_2} \cdots (z - \alpha_s)^{p_s} g(z)}{(z - z_1)^{n(q_1+k)} (z - z_2)^{n(q_2+k)} \cdots (z - z_t)^{n(q_t+k)}}$$

where $g(z) = g_1^n(z)$ is a polynomial and

$$(2.15) \, \deg(g(z)) \le \max\{(n-1)q + nkt, (n-1)p - nks + n\deg(g_1(z))\}\$$

Noting that D(f) - b has exactly one zero z_0 with multiplicity l, from (2.14) we have

$$(2.16) D(f) = f + a \left(f^{(k)}\right)^n \\ = b + \frac{B(z - z_0)^l}{(z - z_1)^{n(q_1 + k)}(z - z_2)^{n(q_2 + k)} \cdots (z - z_t)^{n(q_t + k)}},$$

where B is a non-zero number.

It follows from (2.14) and (2.16) that

$$(2.17) (D(f))' = \frac{(z-\alpha_1)^{p_1-1}(z-\alpha_2)^{p_2-1}\cdots(z-\alpha_s)^{p_s-1}h_1(z)}{(z-z_1)^{n(q_1+k)+1}(z-z_2)^{n(q_2+k)+1}\cdots(z-z_t)^{n(q_t+k)+1}}$$

and

$$(2.18) (D(f))' = \frac{(z-z_0)^{l-1} h_2(z)}{(z-z_1)^{n(q_1+k)+1} (z-z_2)^{n(q_2+k)+1} \cdots (z-z_t)^{n(q_t+k)+1}}$$

where $h_1(z), h_2(z)$ are polynomials. Both (2.14) and (2.17) imply that $(D(f))_{\infty} = p + \deg(g(z)) - nq - nkt$ and $((D(f))')_{\infty} = p - s + \deg(h_1(z)) - nq - nkt - t$. Lemma 3 tells us that $((D(f))')_{\infty} \leq (D(f))_{\infty} - 1$, then

 $(2.19) \quad \deg(h_1(z)) \le s + t - 1 + \deg(g(z)) = s + t - 1 + n \deg(g_1(z)).$

Similarly(2.16) and (2.18) yields that

$$(2.20) deg(h_2(z)) \le t.$$

Since $\alpha_i \neq z_0$ for i = 1, 2, ..., s, it follows from (2.17) and (2.18) that $p - s \leq \deg(h_2(z)) \leq t$, which implies that $p \leq s + t \leq \frac{p}{k+2} + \frac{q}{2}$. One can deduce that

$$(2.21) p < q.$$

Blow we divided into the following two cases again.

Case 1.2.1. $l \neq nq + nkt$. It follows from (2.14) that

(2.22)
$$nq + nkt \le p + \deg(g(z)).$$

If $\deg(g(z)) \leq (n-1)q + nkt$, we thus from (2.22) obtain that $nq + nkt \leq p + (n-1)q + nkt$, which implies that $q \leq p < q$ by (2.21). This is impossible.

If $\deg(g(z)) \leq (n-1)p - nks + n \deg(g_1(z))$, since $\deg(g_1(z)) \leq k(s+t-1)$, hence $nq + nkt \leq (n-1)p - nks + +nk(s+t-1)$, we have $q \leq p-1 < q-1$ by (2.21). We thus arrive at a contradiction.

Case 1.2.2. l = nq + nkt. It is obtained from (2.17) and (2.18) that

(2.23)
$$l-1 \le \deg(h_1(z)) \le s+t-1 + \deg(g(z)).$$

If $\deg(g(z)) \leq (n-1)q + nkt$, we thus from (2.23) obtain that $l \leq s+t + \deg(g(z))$, which implies that $nq + nkt \leq s+t + (n-1)q + nkt$. We have $q \leq s+t \leq \frac{p}{k+2} + \frac{q}{2} \leq \frac{q}{k+2} + \frac{q}{2} < q$ by (2.21). This is impossible.

If $\deg(g(z)) \leq (n-1)p - nks + n \deg(g_1(z)) \leq (n-1)p - nks + nk(s+t-1)$. Since $\deg(g_1(z)) \leq k(s+t-1)$ and l = nq+nkt, hence (2.23) implies that $nq+nkt \leq (n-1)p - nks + nk(s+t-1)$, we have $q \leq p-1 < q-1$ by (2.21). This is a contradiction.

Case 2. Let D(f) - b has no zero. Then f can not be a polynomial, otherwise D(f) becomes a polynomial of degree at least 4. Hence f is non polynomial rational function. Now putting l = 0 in (2.16) and proceeding as case 1.2 of Lemma 6, we have a contradiction. The proof of Lemma 6 is completed.

3. Proof of Theorem

Suppose that F is not normal in D, then there exists at least one point z_0 such that F is not normal at the point z_0 . Without loss of generality we assume that $z_0 = 0$ and $D = \triangle$. We shall consider two cases.

Case 1. b = 0. Recall that all zeros of f have multiplicity at least k + 2, then, by Lemma 1, there exist a sequence points $z_j \to 0(j \to \infty)$; a sequence of positive numbers ρ_j , $\rho_j \to 0$ and a sequence of functions f_j , $f_j \in F$ such that $g_j(\xi) = \rho_j^{-\frac{nk}{n-1}} f_j(z_j + \rho_j \xi) \to g(\xi)$ locally uniformly with respect to spherical metric on \mathbb{C} , where $g(\xi)$ is a non-constant meromorphic function and all zeros of $g(\xi)$ have multiplicity at least k + 2.

From the above, we obtain

(3.1)
$$g_j^{(k)} = \rho_j^{-\frac{k}{n-1}} f_j^{(k)} \to g^{(k)},$$

and

$$\rho_j^{-\frac{nk}{n-1}}\left[f_j + a\left(f_j^{(k)}\right)^n\right] = g_j + a\left(g_j^{(k)}\right)^n \to g + a\left(g^{(k)}\right)^n$$

also locally uniformly with respect to the spherical metric, that is,

(3.2)
$$\rho_j^{-\frac{nk}{n-1}} \left[D(f_j) \right] = D(g_j) \to D(g)$$

also locally uniformly with respect to the spherical metric.

If $D(g) = g + a(g^{(k)})^n \equiv 0$, then g clearly has no poles and is not any polynomial with order at least k + 2, so g is a transcendental entire function. By Lemma 2, g is of exponential type. Noting that $g \neq 0$, then g has the form $g(\xi) = e^{c\xi+d}$, where $c(c \neq 0), d$ are two constants. Hence

$$e^{c\xi+d} + a \left[e^{c\xi+d}\right]^n = e^{c\xi+d} \left[1 + ac^{nk}e^{(n-1)(c\xi+d)}\right] \equiv 0.$$

So we get $e^{(n-1)(c\xi+d)} \equiv -\frac{1}{ac^{nk}}$. This is a contradiction since $n \ge k+1 \ge 2$. Since g is a non-constant meromorphic function, by Lemmas 4 and 5, we deduce

Since g is a non-constant meromorphic function, by Lemmas 4 and 5, we deduce that $D(g) = g + a(g^{(k)})^n$ has at least two distinct zeros.

On the other hand, we conclude that $D(g) = g + a(g^{(k)})^n$ has just a unique zero.

Suppose that there exist two distinct zeros ξ_0 and ξ_0^* and choose $\delta(\delta > 0)$ small enough such that $D(\xi_0, \delta) \cap D(\xi_0^*, \delta) = \emptyset$, where $D(\xi_0, \delta) = \{\xi : |\xi - \xi_0| < \delta\}$ and $D(\xi_0^*, \delta) = \{\xi : |\xi - \xi_0| < \delta\}$.

From (3.1) and (3.2), by Hurwitz's theorem, there exist points $\xi_j \in D(\xi_0, \delta)$, $\xi_j^* \in D(\xi_0^*, \delta)$ such that for sufficiently large j

$$D(f_j(z_j + \rho_j \xi_j)) = f_j(z_j + \rho_j \xi_j) + a \left[f_j^{(k)}(z_j + \rho_j \xi_j) \right]^n = 0,$$

$$D(f_j(z_j + \rho_j \xi_j^*)) = f_j(z_j + \rho_j \xi_j^*) + a \left[f_j^{(k)}(z_j + \rho_j \xi_j^*) \right]^n = 0.$$

By the hypothesis that for each pair of functions f and g in F, D(f) and D(g) share 0, we know that for any positive integer m

$$D(f_m(z_j + \rho_j \xi_j)) = f_m(z_j + \rho_j \xi_j) + a \left[f_m^{(k)}(z_j + \rho_j \xi_j) \right]^n = 0,$$

$$D(f_m(z_j + \rho_j \xi_j^*)) = f_m(z_j + \rho_j \xi_j^*) + a \left[f_m^{(k)}(z_j + \rho_j \xi_j^*) \right]^n = 0.$$

Fix m, take $j \to \infty$, and note $z_j + \rho_j \xi_j \to 0, z_j + \rho_j \xi_j^* \to 0$, then

$$D(f_m(0)) = f_m(0) + a\left(f_m^{(k)}\right)^n(0) = 0$$

Since the zeros of $D(f_m) = f_m + a(f_m^{(k)})^n$ has no accumulation point, so

$$z_j + \rho_j \xi_j = 0, \quad z_j + \rho_j \xi_j^* = 0.$$

Hence

$$\xi_j = -\frac{z_j}{\rho_j}, \quad \xi_j^* = -\frac{z_j}{\rho_j},$$

which contradicts the fact that $\xi_j \in D(\xi_0, \delta), \xi_j^* \in D(\xi_0^*, \delta)$ and $D(\xi_0, \delta) \cap D(\xi_0^*, \delta) = \emptyset$. So $g + a(g^{(k)})^n$ has just a unique zero. This contradicts the fact that $D(g) = g + a(g^{(k)})^n$ has at least two distinct zeros.

Case 2. $b \neq 0$. By Lemma 1 again, there exist a sequence of points $z_j \to 0(j \to \infty)$; a sequence of positive numbers $\rho_j, \rho_j \to 0$ and a sequence of functions $f_j, f_j \in F$ such that $g_j(\xi) = f_j(z_j + \rho_j \xi) \to g(\xi)$ locally uniformly with respect to spherical metric on \mathbb{C} , where $g(\xi)$ is a non-constant meromorphic function. Moreover g is of order of at most 2 and only zeros of g have multiplicity at least k + 2 and poles of g have multiplicity at least 2.

From the above discussion, we have

$$(3.3) \qquad D(f_j(z_j + \rho_j \xi)) - b = D(g_j(\xi)) \to D(g(\xi)) - b \quad as \quad j \to \infty$$

also locally uniformly with respect to the spherical metric.

Now we can conclude that : if $g^{(k)}(\xi_0) = 0$ then $g(\xi_0) \neq b$. Suppose that $g(\xi_0) = b$, then by Hurwitzs theorem, there exists $\xi_j \to \xi_0$ for $j \to \infty$ such that $g_j(\xi_j) = f_j(z_j + \rho_j\xi_j) = b$. It follows from $g^{(k)}(\xi_0) = 0$ that $g_j^{(k)}(\xi_j) = 0$, which implies $\rho_j^k f_j^{(k)}(z_j + \rho_j\xi_j) = 0$. We thus have $f_j^{(k)}(z_j + \rho_j\xi_j) = 0$. By condition of theorem 1, we deduce that $f_j(z_j + \rho_j\xi_j) \neq b$, which contradicts that $f_j(z_j + \rho_j\xi_j) = b$.

If $D(g(\xi)) \equiv b$. The argument in this case is completely analogous to the proof of $D(g(\xi)) = g(\xi) + a(g^{(k)})^n(\xi) \equiv 0$ and then we have a contradiction. So we omit its proof.

We derive that $D(g(\xi)) - b$ has at least two zeros by Lemmas 4 and 6 since g is a non-constant meromorphic function.

On the other hand, we can claim that $D(g(\xi)) - b$ has just a unique zero. Suppose that there exist two distinct zeros ξ_0 and ξ_0^* and choose $\delta(\delta > 0)$ small enough such that $D(\xi_0, \delta) \cap D(\xi_0^*, \delta) = \emptyset$, where $D(\xi_0, \delta) = \{\xi : |\xi - \xi_0| < \delta\}$ and $D(\xi_0^*, \delta) = \{\xi : |\xi - \xi_0^*| < \delta\}.$

By (3.3) and Hurwitz's theorem, there exist points $\xi_j \in D(\xi_0, \delta), \, \xi_j^* \in D(\xi_0^*, \delta)$ such that for sufficiently large j

$$D(f_j(z_j + \rho_j \xi_j)) - b = 0, D(f_j(z_j + \rho_j \xi_j^*)) - b = 0.$$

By the hypothesis that for each pair of functions f and g in F, D(f) and D(g) share b, we know that for any positive integer m

$$D(f_m(z_j + \rho_j \xi_j)) - b = 0, D(f_m(z_j + \rho_j \xi_i^*)) - b = 0.$$

Fix m, take $j \to \infty$, and note $z_j + \rho_j \xi_j \to 0, z_j + \rho_j \xi_j^* \to 0$, then

$$D(f_m(0)) - b = 0.$$

Since the zeros of $D(f_m) - b$ has no accumulation point, so

$$z_j + \rho_j \xi_j = 0, \quad z_j + \rho_j \xi_j^* = 0.$$

Hence

$$\xi_j = -\frac{z_j}{\rho_j}, \quad \xi_j^* = -\frac{z_j}{\rho_j}.$$

This contradicts the fact that $\xi_j \in D(\xi_0, \delta), \xi_j^* \in D(\xi_0^*, \delta)$ and $D(\xi_0, \delta) \cap D(\xi_0^*, \delta) = \emptyset$. So $a(g^{(k)})^n - b$ has just a unique zero, which contradicts that D(g) - b has at least two zeros. This proves the Theorem 1.

Acknowledgements. The author would like to thank Professor Qiao Jian-yong and Professor Li Yu-hua for their useful conversations and for their help in preparing the manuscript.

References

- W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Revista Matemtica Iberoamericana, 11(2)(1995), 355-375.
- H. H. Chen and Y. X. Gu, Y, An improvement of Marty criterion and its application, Sci China Ser A, 36(1993), 674-681.
- [3] J. Cline and Y. K. Hayman, The spherical derivatives of integral and meromorphic functins, Comment Math Hev, 40(1996), 117-148.
- G. Datt and S. Kumar, Normality of meromorphic functions with multiple zeros and poles, arXiv:1305.6214V1.
- [5] H. K. Hayman, Meromorphic functions, Clarendon, Oxford, 1964.
- [6] X. C. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc, 32(2000), 325-331.
- [7] D. W. Meng and P. C. Hu, Normality criteria of meromorphic functons sharing one value, J. Math. Anal. Appl., 381(2011), 724-731.
- [8] J. Schiff, Normal families, Springer-Verlag, Berlin, 1993.
- [9] W. Schwick, Sharing Values and Normality, Archiv der Mathematik, 59(1992), 50-54.
- [10] Y. Xu, F. Q. Wu and L. W. Liao, Picard values and normal families of meromorphic functions, Proc. Roy. Soc. Edinburgh Sect A, 139(2009), 1091-1099.
- [11] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Science Press/Kluwer Academic, Beijing/New York, 2003.
- [12] S. Zeng and I. Lahiri, A normality criterion for meromorphic functions, Kodai Math. J., 35(2012), 105-114.