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Abstract. In this paper we study the problem of normal families of meromorphic func-

tions concerning shared values. Let F be a family of meromorphic functions in the plane

domain D ⊆ C and n, k be two positive integers such that n ≥ k + 1, and let a, b be two

finite complex constants such that a 6= 0. Suppose that (1) f + a(f (k))n and g + a(g(k))n

share b in D for every pair of functions f, g ∈ F ; (2) All zeros of f have multiplicity at

least k + 2 and all poles of f have multiplicity at least 2 for each f ∈ F in D; (3) Zeros

of f (k)(z) are not the b points of f(z) for each f ∈ F in D. Then F is normal in D. And

some examples are provided to show the result is sharp.

1. Introduction and Main Results

In this paper, we denote by C the whole complex plane. A function f is called
meromorphic if it is analytic in a domain D ⊂ C except at possible isolated poles. A
function f is called normal if there exists a positive number M such that f ](z) ≤ M

for all z ∈ D, where f ](z) = |f ′(z)|
1+|f(z)|2 denotes the spherical derivative of f . For

a ∈ C, set Ef (a) = {z ∈ D : f(z) = a}. We say that two meromorphic functions f
and g share the value a provided that Ef (a) = Eg(a) in D. When a = ∞ the zeros
of f − a mean the poles of f (see [4]). Let F be a family of meromorphic functions
in a domain D ⊆ C. We say that F is normal in D if every sequence {fn} ⊆ F con-
tains a subsequence which converges spherically uniformly on the compact subsets
of D (see [8,11]).

In 1992, W. Schwick [9] obtained a connection between normality criteria and
sharing values. He proved the theorem as follows.
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Theorem A. Let F be a family of meromorphic functions on a domain D and
a1, a2, a3 be distinct complex numbers. If f and f ′ share a1, a2, a3 for every f ∈ F ,
then F is normal in D.

Since then many results in this direction have been obtained. In 2011, D. W.
Meng and P. C. Hu [7] proved the following normality criteria.

Theorem B. Take a positive integer k and a complex number a( 6= 0). Let F be
a family of meromorphic functions in a domain D ⊂ C such that each f ∈ F has
only zeros of multiplicity at least k + 1. For each pair f, g ∈ F , if ff (k) and gg(k)

share a, then F is normal in D.

Recently, G. Datt and S. Kumar [4] obtained the following result.

Theorem C. Let F be a family of meromorphic functions defined in a domain D
such that for each f ∈ F satisfies the followings :

(1) Zeros of f(z) are of multiplicity at least 3 in D and poles of f(z) are of
multiplicity at least 2.

(2) Zeros of f ′(z) are not the b points of f(z), where b is a non-zero constant.
If for each pair of functions f, g ∈ F , f +(f ′)n and g +(g′)n share the value b, then
F is normal in D.

Let f be a meromorphic function in D ⊂ C and a ∈ C− {0} and n(≥ 2), k are
two positive integers, we define

D(f) = f + a(f (k))n

a non-linear differential polynomial. It is natural to ask whether Theorem C can be
improved by the idea of D(f) = f + a(f (k))n. In this paper, we study the problem
and obtain the following result.

Theorem 1. Let F be a family of meromorphic functions in the plane domain
D ⊆ C and n, k be two positive integers such that n ≥ k + 1, and let a, b be two
finite complex constants such that a 6= 0. Suppose that

(1) Zeros of f have multiplicity at least k + 2 and poles of f have multiplicity
at least 2 for each f ∈ F in D;

(2) Zeros of f (k)(z) are not the b points of f(z) for each f ∈ F in D.
If D(f) and D(g) share b in D for every pair of functions f, g ∈ F , then F is normal
in D.

Example 1. Let D = {z : |z| < 1}, n, k ∈ N and F = {fn(z)}, where

fn(z) = nzk+1, z ∈ D, n = 1, 2, . . . .

Obviously, fn + (f (k)
n )k+1 = [n + (n(k + 1)!)k+1]zk+1. So for each pair m, n,

fn + (f (k)
n )k+1 and fm + (f (k)

m )k+1 share the value 0 in D, however, F fails to
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be normal in D since f ]
n

(
1

k+1√n

)
=

k+1√n(k+1)
2 →∞ as n →∞.

Example 1 shows that Theorem 1 is not valid when all zeros of f have multi-
plicity k + 1, so the condition that f has only zeros with multiplicity k + 2 is best
possible for Theorem 1.

2. Some Lemmas

In order to prove our theorems, we need the following preliminary results.
Suppose that f is non-constant and meromorphic and k is a positive integer.

Set M [f ] = fn0(f ′)n1 · · · (f (k)))nk and γM = Σk
j=0nj , where n0, n1, . . . , nk are non-

negtive integers, then M [f ] is called a differential monomial of f , and γM the
degree of M [f ]. Suppose that Mj [f ] are differential monomials of f with degree
γMj

(j = 1, . . . , n). Set Q[f ] = Σn
j=1aj(z)Mj [f ] and γQ = max1≤j≤nγMj

. Then
Q[f ] is said to be a differential polynomial of f with degree γQ if the coefficients
aj(z)(j = 1, . . . , n) satisfy T (r, aj(z)) = S(r, f). If γM1 = γM2 = · · · = γMn , then
Q[f ] is called a homogeneous differential polynomial of f . In addition, we shall use
the following standard notations of Nevanlinna′s Theory and its some fundamental
results ( see [8,11]). In particular, S(r, f) = o(T (r, f)) (r →∞) except for a finite
linear measure of the set of the value r.

The following result is due to Pang and Zalcman [6] (cf. [2]).

Lemma 1.([2],[6]) Let F be a family of meromorphic functions in the unit disc
4 ⊆ C and let k be a positive integer. Suppose that all zeros of f have multiplicity
at least k for every f ∈ F , and suppose that there exists a number A ≥ 1 such
that |f (k)(z)| ≤ A whenever f(z) = 0. If F is not normal at z0 ∈ 4 , then for any
0 ≤ α ≤ k, there exist
(1) a number r ∈ (0, 1),
(2) a sequence of complex numbers zn → z0, |zn| ≤ r,
(3) a sequence of functions fn ∈ F ,
(4) a sequence of positive numbers ρn → 0
such that gn(ξ) = ρ−α

n fn(zn + ρnξ) converges locally uniformly (with respect to
spherical metric) to a non-constant meromorphic function g(ξ) on C, and moreover,
the zeros of g(ξ) are of multiplicity at least k, g](ξ) ≤ g](0) = kA + 1.

Remark 1. In Lemma 1, if 0 ≤ α < k, then the hypothesis of f (k) can be dropped,
and kA + 1 can be replaced by an arbitrary positive number (see [2]).

Lemma 2.([3]) A normal function has order at most two. A normal entire function
is of exponential type, and thus has order at most one.

Lemma 3.([12]) Let f = P
Q be a rational function and Q be non constant. Then

(f (k))∞ ≤ (f)∞ − k, where k is a positive integer, (f)∞ = deg(P )− deg(Q).

Lemma 4.([10]) Let f be a transcendental meromorphic function, and let a be a
nonzero finite complex number and n, k be two positive integers such that n ≥ k+1,
then f + a(f (k))n assumes every finite complex value infinitely often.
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Lemma 5. Let n, k be two positive integers such that n ≥ k + 1, and let f be
a non-constant rational function such that all zeros of f have multiplicity at least
k+2 and poles (if exists) of f are of multiplicity at least 2, then D(f) = f +a(f (k))n

has at least two distinct zeros.

Proof. We consider the following cases.

Case 1. D(f) = f + a(f (k))n has exactly one zero z0 (say).

Case 1.1. f is a non-constant polynomial. it is easily obtained that D(f) =
f + a(f (k))n has zeros since all zeros of f have multiplicity at least k + 2. Suppose
that D(f) = f + a(f (k))n has exactly one zero z0 with multiplicity l, then D(f) =
f + a(f (k))n has the form D(f) = f + a(f (k))n = A(z− z0)l, where A is a non-zero
constant, l is a positive integer. Obviously, l ≥ k + 2 since f has only zeros with
multiplicity at least k + 2. So

(D(f))(k) = f (k) + a
[(

f (k)
)n](k)

(2.1)

= Al(l − 1) · · · (l − k + 1)(z − z0)l−k.

On the other hand, the simple calculation implies that

(D(f))(k) = f (k) + a[(f (k))n](k) = f (k)
[
1 + Q

(
f (k)

)]
,(2.2)

where

Q
(
f (k)

)
= a

(
f (k)

)n−k−1 n!
(n− k)!

(
f (k+1)

)k

+ a
(
f (k)

)n−k−1 C2
nn!

(n− k + 1)!

(
f (k+1)

)k−2

f (k+2)

+ · · ·+ an
(
f (k)

)n−k−1 (
f (k)

)k−1

f (2k),

and Q(f (k)) is a homogeneous differential polynomial of f (k) of degree n− 1. From
(2.1) and (2.2) we know that f (k) has exactly the same zero z0, so f has the same
zero z0 and z0 is the unique zero of f . Thus f has the form f(z) = A0(z−z0)p, where
A0 is non-zero constant and p is a positive integer such that p ≥ k+2. Thus D(f) =
f +a(f (k))n = A0(z−z0)p{1+aAn−1

0 [p(p−1) · · · (p−k+1)]n(z−z0)(n−1)p−nk} has
at least two distinct zeros since (n− 1)p−nk ≥ 1 for n ≥ k +1 and p ≥ k +2. This
is a contradiction that our assumptions. Thus D(f) = f +a(f (k))n has at least two
distinct zeros.

Case 1.2. f is a nonconstant rational function which is not a polynomial. Suppose
that D(f) = f + a(f (k))n has exactly one zero z0 with multiplicity l. So we deduce
that f has exactly one zero z0 and then z0 is the unique zero of f . Otherwise
f +a(f (k))n has at least two distinct zeros, which contradicts that our assumptions.
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Put

f(z) =
A(z − z0)p

(z − z1)q1(z − z2)q2 · · · (z − zt)qt
,(2.3)

where A is a non-zero constant and qi ≥ 2(i = 1, 2, . . . , t), p are positive integers
such that p ≥ k + 2.

For brevity, we denote

q1 + q2 + · · ·+ qt = q ≥ 2t.

From (2.3), it follows that

f (k)(z) =
A(z − z0)p−kg(z)

(z − z1)q1+k(z − z2)q2+k · · · (z − zt)qt+k
,(2.4)

where g(z) is a polynomial and ckt−1, . . . , c1, c0 are constants. Then (2.3) and (2.4)
imply that (f)∞ = p− q and (f (k))∞ = p− k + deg(g(z))− q− kt, It is easy to see
that deg(g(z)) ≤ kt by Lemma 3.

From (2.3) and (2.4), then

D(f) = f + a
(
f (k)

)n

(2.5)

=
Ap1(z) + aAnp2(z)

(z − z1)n(q1+k)(z − z2)n(q2+k) · · · (z − zt)n(qt+k)
,

where

p1(z) = (z − z0)p(z − z1)(n−1)q1+nk(z − z2)(n−1)q2+nk · · · (z − zt)(n−1)qt+nk

and
p2(z) = (z − z0)n(p−k)gn(z).

It follows that deg(p1(z)) = (n − 1)q + nkt and deg(p2(z)) = n(p − k) +
n deg(g(z)). We can claim that

deg(p1(z)) 6= deg(p2(z)).(2.6)

If p ≤ q + k, then deg(p1(z)) − deg(p2(z)) ≥ (n − 1)(q − p) + nk ≥ 1, which
implies that deg(p1(z)) 6= deg(p2(z)).

If p > q + k, then deg(g(z)) = kt. Hence deg(p2(z))− deg(p1(z)) = (n− 1)(p−
q)− nk ≥ 1, which also yields that deg(p1(z)) 6= deg(p2(z)), as claimed.

Since n(p− k) > p for n ≥ k + 1 and p ≥ k + 2. It follows from (2.5) that

D(f) = f + a
(
f (k)

)n

(2.7)

=
A(z − z0)pg1(z)

(z − z1)n(q1+k)(z − z2)n(q2+k) · · · (z − zt)n(qt+k)
,
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where

g1(z) = (z − z1)(n−1)q1+nk(z − z2)(n−1)q2+nk · · · (z − zt)(n−1)qt+nk

+aAn−1(z − z0)n(p−k)−pgn(z).

By the assumption that f + a(f (k))n has exactly one zero z0 with multiply l, we
deduce from (2.5) that

D(f) = f + a
(
f (k)

)n

(2.8)

=
C(z − z0)l

(z − z1)n(q1+k)(z − z2)n(q2+k) · · · (z − zt)n(qt+k)
.

Hence (2.7) and (2.8) mean that

C(z − z0)l ≡ A(z − c0)pg1(z),(2.9)

where C is a non-zero constant.

Case 1.2.1. l > p. It follows from (2.9) that g1 has a zero z0 and then (z −
z1)(n−1)q1+nk(z − z2)(n−1)q2+nk · · · (z − zt)(n−1)qt+nk has a zero z0, which leads to
a contradiction.

Case 1.2.2. l = p. In view of (2.9), one has that

h1(z) + h2(z) ≡ C

A
,(2.10)

where

h1(z) = (z − z1)(n−1)q1+nk(z − z2)(n−1)q2+nk · · · (z − zt)(n−1)qt+nk

and
h2(z) = aAn−1(z − z0)n(p−k)−pgn(z).

We easily obtain from (2.10) that deg(h1) = deg(h2). On the other hand, (2.6)
and the definitions of p1(z), p2(z), g1, h1 and h2 yield that deg(h1) 6= deg(h2). We
thus have a contradiction.

Case 2. Let D(f) has no zeros. it is easily obtained that f is not a polynomial,
otherwise D(f) becomes a polynomial of degree at least 4. Hence f is a non-
polynomial rational function. Now putting l = 0 in (2.8) and proceeding as case
1.2, we thus arrive at a contradiction.

The proof is complete. 2

Lemma 6. Let n, k be two positive integers such that n ≥ k + 1, and let f be a
non-constant rational function with following properties :

(1) Zeros of f have multiplicity at least k + 2 and poles (if exists) of f are of
multiplicity at least 2.
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(2) Zeros of f (k) are not the b points of f , where b is a non-zero constant. then
D(f)− b has at least two distinct zeros.

Proof. We consider the following cases.

Case 1. D(f)− b has exactly one zero z0 (say) with multiplicity l.

Case 1.1. f is a non-constant polynomial. It is easily obtained that D(f)− b has
zeros since all zeros of f have multiplicity at least k + 2. Suppose that D(f) − b
has exactly one zero z0 with multiplicity l, then D(f)− b has the form D(f)− b =
A(z−z0)l, where A is a non-zero constant, l is a positive integer. Obviously, l ≥ k+2
since f has only zeros with multiplicity at least k + 2. So

(D(f))(k) = f (k) + a
[(

f (k)
)n](k)

= Al(l − 1) · · · (l − k + 1)(z − z0)l−k.

On the other hand, the simple calculation implies that

(D(f))(k) = f (k) + a[(f (k))n](k) = f (k)
[
1 + Q

(
f (k)

)]
,

where Q
(
f (k)

)
is given in Case 1.1 of lemma 5. This shows that z0 is only zero of

(D(f))(k). Note that a zero of f (k) is also a zero of (D(f))(k) = f (k)
[
1 + Q

(
f (k)

)]

and f (k) is a nonconstant function. We thus conclude that z0 is a zero of f (k), which
yields that f(z0) = b. This is a contradiction that our assumptions. Thus D(f)− b
has at least two distinct zeros.

Case 1.2. f is a nonconstant rational function which is not a polynomial. By the
hypothesis, we may put

f(z) =
A(z − α1)p1(z − α2)p2 · · · (z − αs)ps

(z − z1)q1(z − z2)q2 · · · (z − zt)qt
,(2.11)

where A is a non-zero constant, pi(i = 1, 2, . . . , s), qj(j = 1, 2, . . . , t) are positive
integers such that pi ≥ k + 2(i = 1, 2, . . . , s) and qj ≥ 2(j = 1, 2, . . . , t).

For brevity, we denote

p =
s∑

i=1

pi ≥ (k + 2)s, q =
t∑

j=1

qj ≥ 2t.

From (2.11), it follows that

f (k)(z) =
A(z − α1)p1−k(z − α2)p2−k · · · (z − αs)ps−kg1(z)

(z − z1)q1+k(z − z2)q2+k · · · (z − zt)qt+k
,(2.12)

where g1(z) is a polynomial and ckt−1, . . . , c1, c0 are constants. Then (2.11) and
(2.12) imply that (f)∞ = p − q and (f (k))∞ = p − ks + deg(g(z)) − q − kt, By
Lemma 3, it is easy to see that

deg(g1(z)) ≤ k(s + t− 1).(2.13)
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From (2.11) and (2.12), then

D(f) = f + a
(
f (k)

)n

(2.14)

=
(z − α1)p1(z − α2)p2 · · · (z − αs)psg(z)

(z − z1)n(q1+k)(z − z2)n(q2+k) · · · (z − zt)n(qt+k)
,

where g(z) = gn
1 (z) is a polynomial and

deg(g(z)) ≤ max{(n− 1)q + nkt, (n− 1)p− nks + n deg(g1(z))}.(2.15)

Noting that D(f)− b has exactly one zero z0 with multiplicity l, from (2.14) we
have

D(f) = f + a
(
f (k)

)n

(2.16)

= b +
B(z − z0)l

(z − z1)n(q1+k)(z − z2)n(q2+k) · · · (z − zt)n(qt+k)
,

where B is a non-zero number.
It follows from (2.14) and (2.16) that

(D(f))′ =
(z − α1)p1−1(z − α2)p2−1 · · · (z − αs)ps−1h1(z)

(z − z1)n(q1+k)+1(z − z2)n(q2+k)+1 · · · (z − zt)n(qt+k)+1
(2.17)

and

(D(f))′ =
(z − z0)l−1h2(z)

(z − z1)n(q1+k)+1(z − z2)n(q2+k)+1 · · · (z − zt)n(qt+k)+1
,(2.18)

where h1(z), h2(z) are polynomials. Both (2.14) and (2.17) imply that (D(f))∞ =
p+deg(g(z))−nq−nkt and ((D(f))′)∞ = p−s+deg(h1(z))−nq−nkt− t. Lemma
3 tells us that ((D(f))′)∞ ≤ (D(f))∞ − 1, then

deg(h1(z)) ≤ s + t− 1 + deg(g(z)) = s + t− 1 + n deg(g1(z)).(2.19)

Similarly(2.16) and (2.18) yields that

deg(h2(z)) ≤ t.(2.20)

Since αi 6= z0 for i = 1, 2, . . . , s, it follows from (2.17) and (2.18) that p − s ≤
deg(h2(z)) ≤ t, which implies that p ≤ s + t ≤ p

k+2 + q
2 . One can deduce that

p < q.(2.21)

Blow we divided into the following two cases again.

Case 1.2.1. l 6= nq + nkt. It follows from (2.14) that

nq + nkt ≤ p + deg(g(z)).(2.22)
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If deg(g(z)) ≤ (n − 1)q + nkt, we thus from (2.22) obtain that nq + nkt ≤
p + (n− 1)q + nkt, which implies that q ≤ p < q by (2.21). This is impossible.

If deg(g(z)) ≤ (n − 1)p − nks + n deg(g1(z)), since deg(g1(z)) ≤ k(s + t − 1),
hence nq + nkt ≤ (n − 1)p − nks + +nk(s + t − 1), we have q ≤ p − 1 < q − 1 by
(2.21). We thus arrive at a contradiction.

Case 1.2.2. l = nq + nkt. It is obtained from (2.17) and (2.18) that

l − 1 ≤ deg(h1(z)) ≤ s + t− 1 + deg(g(z)).(2.23)

If deg(g(z)) ≤ (n−1)q+nkt, we thus from (2.23) obtain that l ≤ s+t+deg(g(z)),
which implies that nq+nkt ≤ s+ t+(n−1)q+nkt. We have q ≤ s+ t ≤ p

k+2 + q
2 ≤

q
k+2 + q

2 < q by (2.21). This is impossible.
If deg(g(z)) ≤ (n− 1)p− nks + ndeg(g1(z)) ≤ (n− 1)p− nks + nk(s + t− 1).

Since deg(g1(z)) ≤ k(s+t−1) and l = nq+nkt, hence (2.23) implies that nq+nkt ≤
(n − 1)p − nks + +nk(s + t − 1), we have q ≤ p − 1 < q − 1 by (2.21). This is a
contradiction.

Case 2. Let D(f) − b has no zero. Then f can not be a polynomial, otherwise
D(f) becomes a polynomial of degree at least 4. Hence f is non polynomial rational
function. Now putting l = 0 in (2.16) and proceeding as case 1.2 of Lemma 6, we
have a contradiction. The proof of Lemma 6 is completed. 2

3. Proof of Theorem

Suppose that F is not normal in D, then there exists at least one point z0 such that
F is not normal at the point z0. Without loss of generality we assume that z0 = 0
and D = 4. We shall consider two cases.

Case 1. b = 0. Recall that all zeros of f have multiplicity at least k + 2, then,
by Lemma 1, there exist a sequence points zj → 0(j → ∞); a sequence of positive
numbers ρj , ρj → 0 and a sequence of functions fj , fj ∈ F such that gj(ξ) =

ρ
− nk

n−1
j fj(zj + ρjξ) → g(ξ) locally uniformly with respect to spherical metric on
C, where g(ξ) is a non-constant meromorphic function and all zeros of g(ξ) have
multiplicity at least k + 2.

From the above, we obtain

g
(k)
j = ρ

− k
n−1

j f
(k)
j → g(k),(3.1)

and

ρ
− nk

n−1
j

[
fj + a

(
f

(k)
j

)n]
= gj + a

(
g
(k)
j

)n

→ g + a
(
g(k)

)n

also locally uniformly with respect to the spherical metric, that is,

ρ
− nk

n−1
j [D(fj)] = D(gj) → D(g)(3.2)
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also locally uniformly with respect to the spherical metric.
If D(g) = g+a(g(k))n ≡ 0, then g clearly has no poles and is not any polynomial

with order at least k + 2, so g is a transcendental entire function. By Lemma 2, g
is of exponential type. Noting that g 6= 0, then g has the form g(ξ) = ecξ+d, where
c(c 6= 0), d are two constants. Hence

ecξ+d + a
[
ecξ+d

]n
= ecξ+d

[
1 + acnke(n−1)(cξ+d)

]
≡ 0.

So we get e(n−1)(cξ+d) ≡ − 1
acnk . This is a contradiction since n ≥ k + 1 ≥ 2.

Since g is a non-constant meromorphic function, by Lemmas 4 and 5, we deduce
that D(g) = g + a(g(k))n has at least two distinct zeros.

On the other hand, we conclude that D(g) = g + a(g(k))n has just a unique
zero.

Suppose that there exist two distinct zeros ξ0 and ξ∗0 and choose δ(δ > 0) small
enough such that D(ξ0, δ)

⋂
D(ξ∗0 , δ) = ∅, where D(ξ0, δ) = {ξ : |ξ − ξ0| < δ} and

D(ξ∗0 , δ) = {ξ : |ξ − ξ∗0 | < δ}.
From (3.1) and (3.2), by Hurwitz′s theorem, there exist points ξj ∈ D(ξ0, δ),

ξ∗j ∈ D(ξ∗0 , δ) such that for sufficiently large j

D(fj(zj + ρjξj)) = fj(zj + ρjξj) + a
[
f

(k)
j (zj + ρjξj)

]n

= 0,

D(fj(zj + ρjξ
∗
j )) = fj(zj + ρjξ

∗
j ) + a

[
f

(k)
j (zj + ρjξ

∗
j )

]n

= 0.

By the hypothesis that for each pair of functions f and g in F , D(f) and D(g)
share 0, we know that for any positive integer m

D(fm(zj + ρjξj)) = fm(zj + ρjξj) + a
[
f (k)

m (zj + ρjξj)
]n

= 0,

D(fm(zj + ρjξ
∗
j )) = fm(zj + ρjξ

∗
j ) + a

[
f (k)

m (zj + ρjξ
∗
j )

]n

= 0.

Fix m, take j →∞, and note zj + ρjξj → 0, zj + ρjξ
∗
j → 0, then

D(fm(0)) = fm(0) + a
(
f (k)

m

)n

(0) = 0.

Since the zeros of D(fm) = fm + a(f (k)
m )n has no accumulation point, so

zj + ρjξj = 0, zj + ρjξ
∗
j = 0.

Hence

ξj = − zj

ρj
, ξ∗j = − zj

ρj
,

which contradicts the fact that ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0 , δ) and D(ξ0, δ)
⋂

D(ξ∗0 , δ) =
∅. So g + a(g(k))n has just a unique zero. This contradicts the fact that
D(g) = g + a(g(k))n has at least two distinct zeros.
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Case 2. b 6= 0. By Lemma 1 again, there exist a sequence of points zj → 0(j →∞);
a sequence of positive numbers ρj , ρj → 0 and a sequence of functions fj , fj ∈ F
such that gj(ξ) = fj(zj + ρjξ) → g(ξ) locally uniformly with respect to spherical
metric on C, where g(ξ) is a non-constant meromorphic function. Moreover g is of
order of at most 2 and only zeros of g have multiplicity at least k + 2 and poles of
g have multiplicity at least 2.

From the above discussion, we have

D(fj(zj + ρjξ))− b = D(gj(ξ)) → D(g(ξ))− b as j →∞(3.3)

also locally uniformly with respect to the spherical metric.
Now we can conclude that : if g(k)(ξ0) = 0 then g(ξ0) 6= b. Suppose that

g(ξ0) = b, then by Hurwitzs theorem, there exists ξj → ξ0 for j → ∞ such that
gj(ξj) = fj(zj + ρjξj) = b. It follows from g(k)(ξ0) = 0 that g

(k)
j (ξj) = 0, which

implies ρk
j f

(k)
j (zj + ρjξj) = 0. We thus have f

(k)
j (zj + ρjξj) = 0. By condition of

theorem 1, we deduce that fj(zj+ρjξj) 6= b, which contradicts that fj(zj+ρjξj) = b.
If D(g(ξ)) ≡ b. The argument in this case is completely analogous to the proof

of D(g(ξ)) = g(ξ) + a(g(k))n(ξ) ≡ 0 and then we have a contradiction. So we omit
its proof.

We derive that D(g(ξ))− b has at least two zeros by Lemmas 4 and 6 since g is
a non-constant meromorphic function.

On the other hand, we can claim that D(g(ξ)) − b has just a unique zero.
Suppose that there exist two distinct zeros ξ0 and ξ∗0 and choose δ(δ > 0) small
enough such that D(ξ0, δ)

⋂
D(ξ∗0 , δ) = ∅, where D(ξ0, δ) = {ξ : |ξ − ξ0| < δ} and

D(ξ∗0 , δ) = {ξ : |ξ − ξ∗0 | < δ}.
By (3.3) and Hurwitz′s theorem, there exist points ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0 , δ)

such that for sufficiently large j

D(fj(zj + ρjξj))− b = 0,

D(fj(zj + ρjξ
∗
j ))− b = 0.

By the hypothesis that for each pair of functions f and g in F , D(f) and D(g)
share b, we know that for any positive integer m

D(fm(zj + ρjξj))− b = 0,

D(fm(zj + ρjξ
∗
j ))− b = 0.

Fix m, take j →∞, and note zj + ρjξj → 0, zj + ρjξ
∗
j → 0, then

D(fm(0))− b = 0.

Since the zeros of D(fm)− b has no accumulation point, so

zj + ρjξj = 0, zj + ρjξ
∗
j = 0.
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Hence

ξj = − zj

ρj
, ξ∗j = − zj

ρj
.

This contradicts the fact that ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0 , δ) and D(ξ0, δ)
⋂

D(ξ∗0 , δ) =
∅. So a(g(k))n − b has just a unique zero, which contradicts that D(g) − b has at
least two zeros. This proves the Theorem 1. 2
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