The Normality of Meromorphic Functions with Multiple Zeros and Poles Concerning Sharing Values

Wang You-Ming
Department of Applied Mathematics, College of Science, Hunan Agricultural University, ChangSha 410128, P. R. China
e-mail : wangym2002@163.com

Abstract. In this paper we study the problem of normal families of meromorphic functions concerning shared values. Let F be a family of meromorphic functions in the plane domain $D \subseteq \mathbb{C}$ and n, k be two positive integers such that $n \geq k+1$, and let a, b be two finite complex constants such that $a \neq 0$. Suppose that (1) $f+a\left(f^{(k)}\right)^{n}$ and $g+a\left(g^{(k)}\right)^{n}$ share b in D for every pair of functions $f, g \in F$; (2) All zeros of f have multiplicity at least $k+2$ and all poles of f have multiplicity at least 2 for each $f \in F$ in D; (3) Zeros of $f^{(k)}(z)$ are not the b points of $f(z)$ for each $f \in F$ in D. Then F is normal in D. And some examples are provided to show the result is sharp.

1. Introduction and Main Results

In this paper, we denote by \mathbb{C} the whole complex plane. A function f is called meromorphic if it is analytic in a domain $D \subset \mathbb{C}$ except at possible isolated poles. A function f is called normal if there exists a positive number M such that $f^{\sharp}(z) \leq M$ for all $z \in D$, where $f^{\sharp}(z)=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}$ denotes the spherical derivative of f. For $a \in \mathbb{C}$, set $\bar{E}_{f}(a)=\{z \in D: f(z)=a\}$. We say that two meromorphic functions f and g share the value a provided that $\bar{E}_{f}(a)=\bar{E}_{g}(a)$ in D. When $a=\infty$ the zeros of $f-a$ mean the poles of f (see [4]). Let F be a family of meromorphic functions in a domain $D \subseteq \mathbb{C}$. We say that F is normal in D if every sequence $\left\{f_{n}\right\} \subseteq F$ contains a subsequence which converges spherically uniformly on the compact subsets of D (see $[8,11])$.

In 1992, W. Schwick [9] obtained a connection between normality criteria and sharing values. He proved the theorem as follows.

Theorem A. Let F be a family of meromorphic functions on a domain D and a_{1}, a_{2}, a_{3} be distinct complex numbers. If f and f^{\prime} share a_{1}, a_{2}, a_{3} for every $f \in F$, then F is normal in D.

Since then many results in this direction have been obtained. In 2011, D. W. Meng and P. C. Hu [7] proved the following normality criteria.

Theorem B. Take a positive integer k and a complex number $a(\neq 0)$. Let F be a family of meromorphic functions in a domain $D \subset \mathbb{C}$ such that each $f \in F$ has only zeros of multiplicity at least $k+1$. For each pair $f, g \in F$, if $f f^{(k)}$ and $g g^{(k)}$ share a, then F is normal in D.

Recently, G. Datt and S. Kumar [4] obtained the following result.
Theorem C. Let F be a family of meromorphic functions defined in a domain D such that for each $f \in F$ satisfies the followings :
(1) Zeros of $f(z)$ are of multiplicity at least 3 in D and poles of $f(z)$ are of multiplicity at least 2 .
(2) Zeros of $f^{\prime}(z)$ are not the b points of $f(z)$, where b is a non-zero constant. If for each pair of functions $f, g \in F, f+\left(f^{\prime}\right)^{n}$ and $g+\left(g^{\prime}\right)^{n}$ share the value b, then F is normal in D.

Let f be a meromorphic function in $D \subset \mathbb{C}$ and $a \in \mathbb{C}-\{0\}$ and $n(\geq 2), k$ are two positive integers, we define

$$
D(f)=f+a\left(f^{(k)}\right)^{n}
$$

a non-linear differential polynomial. It is natural to ask whether Theorem C can be improved by the idea of $D(f)=f+a\left(f^{(k)}\right)^{n}$. In this paper, we study the problem and obtain the following result.

Theorem 1. Let F be a family of meromorphic functions in the plane domain $D \subseteq \mathbb{C}$ and n, k be two positive integers such that $n \geq k+1$, and let a, b be two finite complex constants such that $a \neq 0$. Suppose that
(1) Zeros of f have multiplicity at least $k+2$ and poles of f have multiplicity at least 2 for each $f \in F$ in D;
(2) Zeros of $f^{(k)}(z)$ are not the b points of $f(z)$ for each $f \in F$ in D.

If $D(f)$ and $D(g)$ share b in D for every pair of functions $f, g \in F$, then F is normal in D.

Example 1. Let $D=\{z:|z|<1\}, n, k \in \mathbb{N}$ and $F=\left\{f_{n}(z)\right\}$, where

$$
f_{n}(z)=n z^{k+1}, \quad z \in D, \quad n=1,2, \ldots
$$

Obviously, $f_{n}+\left(f_{n}^{(k)}\right)^{k+1}=\left[n+(n(k+1)!)^{k+1}\right] z^{k+1}$. So for each pair m, n, $f_{n}+\left(f_{n}^{(k)}\right)^{k+1}$ and $f_{m}+\left(f_{m}^{(k)}\right)^{k+1}$ share the value 0 in D, however, F fails to
be normal in D since $f_{n}^{\sharp}\left(\frac{1}{\sqrt[k+1]{n}}\right)=\frac{\sqrt[k+1]{n}(k+1)}{2} \rightarrow \infty$ as $n \rightarrow \infty$.
Example 1 shows that Theorem 1 is not valid when all zeros of f have multiplicity $k+1$, so the condition that f has only zeros with multiplicity $k+2$ is best possible for Theorem 1.

2. Some Lemmas

In order to prove our theorems, we need the following preliminary results.
Suppose that f is non-constant and meromorphic and k is a positive integer. Set $M[f]=f^{n_{0}}\left(f^{\prime}\right)^{n_{1}} \cdots\left(f^{(k))}\right)^{n_{k}}$ and $\gamma_{M}=\sum_{j=0}^{k} n_{j}$, where $n_{0}, n_{1}, \ldots, n_{k}$ are nonnegtive integers, then $M[f]$ is called a differential monomial of f, and γ_{M} the degree of $M[f]$. Suppose that $M_{j}[f]$ are differential monomials of f with degree $\gamma_{M_{j}}(j=1, \ldots, n)$. Set $Q[f]=\Sigma_{j=1}^{n} a_{j}(z) M_{j}[f]$ and $\gamma_{Q}=\max _{1 \leq j \leq n} \gamma_{M_{j}}$. Then $Q[f]$ is said to be a differential polynomial of f with degree γ_{Q} if the coefficients $a_{j}(z)(j=1, \ldots, n)$ satisfy $T\left(r, a_{j}(z)\right)=S(r, f)$. If $\gamma_{M_{1}}=\gamma_{M_{2}}=\cdots=\gamma_{M_{n}}$, then $Q[f]$ is called a homogeneous differential polynomial of f. In addition, we shall use the following standard notations of Nevanlinna's Theory and its some fundamental results (see [8,11]). In particular, $S(r, f)=o(T(r, f)) \quad(r \rightarrow \infty)$ except for a finite linear measure of the set of the value r.

The following result is due to Pang and Zalcman [6] (cf. [2]).
Lemma 1. ([2],[6]) Let F be a family of meromorphic functions in the unit disc $\triangle \subseteq \mathbb{C}$ and let k be a positive integer. Suppose that all zeros of f have multiplicity at least k for every $f \in F$, and suppose that there exists a number $A \geq 1$ such that $\left|f^{(k)}(z)\right| \leq A$ whenever $f(z)=0$. If F is not normal at $z_{0} \in \triangle$, then for any $0 \leq \alpha \leq k$, there exist
(1) a number $r \in(0,1)$,
(2) a sequence of complex numbers $z_{n} \rightarrow z_{0},\left|z_{n}\right| \leq r$,
(3) a sequence of functions $f_{n} \in F$,
(4) a sequence of positive numbers $\rho_{n} \rightarrow 0$
such that $g_{n}(\xi)=\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \xi\right)$ converges locally uniformly (with respect to spherical metric) to a non-constant meromorphic function $g(\xi)$ on \mathbb{C}, and moreover, the zeros of $g(\xi)$ are of multiplicity at least $k, g^{\sharp}(\xi) \leq g^{\sharp}(0)=k A+1$.
Remark 1. In Lemma 1, if $0 \leq \alpha<k$, then the hypothesis of $f^{(k)}$ can be dropped, and $k A+1$ can be replaced by an arbitrary positive number (see [2]).
Lemma 2.([3]) A normal function has order at most two. A normal entire function is of exponential type, and thus has order at most one.

Lemma 3. ([12]) Let $f=\frac{P}{Q}$ be a rational function and Q be non constant. Then $\left(f^{(k)}\right)_{\infty} \leq(f)_{\infty}-k$, where k is a positive integer, $(f)_{\infty}=\operatorname{deg}(P)-\operatorname{deg}(Q)$.
Lemma 4. ([10]) Let f be a transcendental meromorphic function, and let a be a nonzero finite complex number and n, k be two positive integers such that $n \geq k+1$, then $f+a\left(f^{(k)}\right)^{n}$ assumes every finite complex value infinitely often.

Lemma 5. Let n, k be two positive integers such that $n \geq k+1$, and let f be a non-constant rational function such that all zeros of f have multiplicity at least $k+2$ and poles (if exists) of f are of multiplicity at least 2 , then $D(f)=f+a\left(f^{(k)}\right)^{n}$ has at least two distinct zeros.
Proof. We consider the following cases.
Case 1. $D(f)=f+a\left(f^{(k)}\right)^{n}$ has exactly one zero z_{0} (say).
Case 1.1. f is a non-constant polynomial. it is easily obtained that $D(f)=$ $f+a\left(f^{(k)}\right)^{n}$ has zeros since all zeros of f have multiplicity at least $k+2$. Suppose that $D(f)=f+a\left(f^{(k)}\right)^{n}$ has exactly one zero z_{0} with multiplicity l, then $D(f)=$ $f+a\left(f^{(k)}\right)^{n}$ has the form $D(f)=f+a\left(f^{(k)}\right)^{n}=A\left(z-z_{0}\right)^{l}$, where A is a non-zero constant, l is a positive integer. Obviously, $l \geq k+2$ since f has only zeros with multiplicity at least $k+2$. So

$$
\begin{align*}
(D(f))^{(k)} & =f^{(k)}+a\left[\left(f^{(k)}\right)^{n}\right]^{(k)} \tag{2.1}\\
& =A l(l-1) \cdots(l-k+1)\left(z-z_{0}\right)^{l-k}
\end{align*}
$$

On the other hand, the simple calculation implies that

$$
\begin{equation*}
(D(f))^{(k)}=f^{(k)}+a\left[\left(f^{(k)}\right)^{n}\right]^{(k)}=f^{(k)}\left[1+Q\left(f^{(k)}\right)\right] \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
Q\left(f^{(k)}\right) & =a\left(f^{(k)}\right)^{n-k-1} \frac{n!}{(n-k)!}\left(f^{(k+1)}\right)^{k} \\
& +a\left(f^{(k)}\right)^{n-k-1} \frac{C_{n}^{2} n!}{(n-k+1)!}\left(f^{(k+1)}\right)^{k-2} f^{(k+2)} \\
& +\cdots+\operatorname{an}\left(f^{(k)}\right)^{n-k-1}\left(f^{(k)}\right)^{k-1} f^{(2 k)},
\end{aligned}
$$

and $Q\left(f^{(k)}\right)$ is a homogeneous differential polynomial of $f^{(k)}$ of degree $n-1$. From (2.1) and (2.2) we know that $f^{(k)}$ has exactly the same zero z_{0}, so f has the same zero z_{0} and z_{0} is the unique zero of f. Thus f has the form $f(z)=A_{0}\left(z-z_{0}\right)^{p}$, where A_{0} is non-zero constant and p is a positive integer such that $p \geq k+2$. Thus $D(f)=$ $f+a\left(f^{(k)}\right)^{n}=A_{0}\left(z-z_{0}\right)^{p}\left\{1+a A_{0}^{n-1}[p(p-1) \cdots(p-k+1)]^{n}\left(z-z_{0}\right)^{(n-1) p-n k}\right\}$ has at least two distinct zeros since $(n-1) p-n k \geq 1$ for $n \geq k+1$ and $p \geq k+2$. This is a contradiction that our assumptions. Thus $D(f)=f+a\left(f^{(k)}\right)^{n}$ has at least two distinct zeros.

Case 1.2. f is a nonconstant rational function which is not a polynomial. Suppose that $D(f)=f+a\left(f^{(k)}\right)^{n}$ has exactly one zero z_{0} with multiplicity l. So we deduce that f has exactly one zero z_{0} and then z_{0} is the unique zero of f. Otherwise $f+a\left(f^{(k)}\right)^{n}$ has at least two distinct zeros, which contradicts that our assumptions.

Put

$$
\begin{equation*}
f(z)=\frac{A\left(z-z_{0}\right)^{p}}{\left(z-z_{1}\right)^{q_{1}}\left(z-z_{2}\right)^{q_{2}} \cdots\left(z-z_{t}\right)^{q_{t}}} \tag{2.3}
\end{equation*}
$$

where A is a non-zero constant and $q_{i} \geq 2(i=1,2, \ldots, t), p$ are positive integers such that $p \geq k+2$.

For brevity, we denote

$$
q_{1}+q_{2}+\cdots+q_{t}=q \geq 2 t
$$

From (2.3), it follows that

$$
\begin{equation*}
f^{(k)}(z)=\frac{A\left(z-z_{0}\right)^{p-k} g(z)}{\left(z-z_{1}\right)^{q_{1}+k}\left(z-z_{2}\right)^{q_{2}+k} \cdots\left(z-z_{t}\right)^{q_{t}+k}} \tag{2.4}
\end{equation*}
$$

where $g(z)$ is a polynomial and $c_{k t-1}, \ldots, c_{1}, c_{0}$ are constants. Then (2.3) and (2.4) imply that $(f)_{\infty}=p-q$ and $\left(f^{(k)}\right)_{\infty}=p-k+\operatorname{deg}(g(z))-q-k t$, It is easy to see that $\operatorname{deg}(g(z)) \leq k t$ by Lemma 3 .

From (2.3) and (2.4), then

$$
\begin{align*}
D(f) & =f+a\left(f^{(k)}\right)^{n} \tag{2.5}\\
& =\frac{A p_{1}(z)+a A^{n} p_{2}(z)}{\left(z-z_{1}\right)^{n\left(q_{1}+k\right)}\left(z-z_{2}\right)^{n\left(q_{2}+k\right) \cdots\left(z-z_{t}\right)^{n\left(q_{t}+k\right)}}},
\end{align*}
$$

where

$$
p_{1}(z)=\left(z-z_{0}\right)^{p}\left(z-z_{1}\right)^{(n-1) q_{1}+n k}\left(z-z_{2}\right)^{(n-1) q_{2}+n k} \cdots\left(z-z_{t}\right)^{(n-1) q_{t}+n k}
$$

and

$$
p_{2}(z)=\left(z-z_{0}\right)^{n(p-k)} g^{n}(z) .
$$

It follows that $\operatorname{deg}\left(p_{1}(z)\right)=(n-1) q+n k t$ and $\operatorname{deg}\left(p_{2}(z)\right)=n(p-k)+$ $n \operatorname{deg}(g(z))$. We can claim that

$$
\begin{equation*}
\operatorname{deg}\left(p_{1}(z)\right) \neq \operatorname{deg}\left(p_{2}(z)\right) \tag{2.6}
\end{equation*}
$$

If $p \leq q+k$, then $\operatorname{deg}\left(p_{1}(z)\right)-\operatorname{deg}\left(p_{2}(z)\right) \geq(n-1)(q-p)+n k \geq 1$, which implies that $\operatorname{deg}\left(p_{1}(z)\right) \neq \operatorname{deg}\left(p_{2}(z)\right)$.

If $p>q+k$, then $\operatorname{deg}(g(z))=k t$. Hence $\operatorname{deg}\left(p_{2}(z)\right)-\operatorname{deg}\left(p_{1}(z)\right)=(n-1)(p-$ $q)-n k \geq 1$, which also yields that $\operatorname{deg}\left(p_{1}(z)\right) \neq \operatorname{deg}\left(p_{2}(z)\right)$, as claimed.

Since $n(p-k)>p$ for $n \geq k+1$ and $p \geq k+2$. It follows from (2.5) that

$$
\begin{align*}
D(f) & =f+a\left(f^{(k)}\right)^{n} \tag{2.7}\\
& =\frac{A\left(z-z_{0}\right)^{p} g_{1}(z)}{\left(z-z_{1}\right)^{n\left(q_{1}+k\right)}\left(z-z_{2}\right)^{n\left(q_{2}+k\right) \cdots\left(z-z_{t}\right)^{n\left(q_{t}+k\right)}}}
\end{align*}
$$

where

$$
\begin{aligned}
g_{1}(z)= & \left(z-z_{1}\right)^{(n-1) q_{1}+n k}\left(z-z_{2}\right)^{(n-1) q_{2}+n k} \cdots\left(z-z_{t}\right)^{(n-1) q_{t}+n k} \\
& +a A^{n-1}\left(z-z_{0}\right)^{n(p-k)-p} g^{n}(z)
\end{aligned}
$$

By the assumption that $f+a\left(f^{(k)}\right)^{n}$ has exactly one zero z_{0} with multiply l, we deduce from (2.5) that

$$
\begin{align*}
D(f) & =f+a\left(f^{(k)}\right)^{n} \tag{2.8}\\
& =\frac{C\left(z-z_{0}\right)^{l}}{\left(z-z_{1}\right)^{n\left(q_{1}+k\right)}\left(z-z_{2}\right)^{n\left(q_{2}+k\right) \cdots\left(z-z_{t}\right)^{n\left(q_{t}+k\right)}}} .
\end{align*}
$$

Hence (2.7) and (2.8) mean that

$$
\begin{equation*}
C\left(z-z_{0}\right)^{l} \equiv A\left(z-c_{0}\right)^{p} g_{1}(z) \tag{2.9}
\end{equation*}
$$

where C is a non-zero constant.
Case 1.2.1. $l>p$. It follows from (2.9) that g_{1} has a zero z_{0} and then $(z-$ $\left.z_{1}\right)^{(n-1) q_{1}+n k}\left(z-z_{2}\right)^{(n-1) q_{2}+n k} \cdots\left(z-z_{t}\right)^{(n-1) q_{t}+n k}$ has a zero z_{0}, which leads to a contradiction.

Case 1.2.2. $l=p$. In view of (2.9), one has that

$$
\begin{equation*}
h_{1}(z)+h_{2}(z) \equiv \frac{C}{A} \tag{2.10}
\end{equation*}
$$

where

$$
h_{1}(z)=\left(z-z_{1}\right)^{(n-1) q_{1}+n k}\left(z-z_{2}\right)^{(n-1) q_{2}+n k} \cdots\left(z-z_{t}\right)^{(n-1) q_{t}+n k}
$$

and

$$
h_{2}(z)=a A^{n-1}\left(z-z_{0}\right)^{n(p-k)-p} g^{n}(z) .
$$

We easily obtain from (2.10) that $\operatorname{deg}\left(h_{1}\right)=\operatorname{deg}\left(h_{2}\right)$. On the other hand, (2.6) and the definitions of $p_{1}(z), p_{2}(z), g_{1}, h_{1}$ and h_{2} yield that $\operatorname{deg}\left(h_{1}\right) \neq \operatorname{deg}\left(h_{2}\right)$. We thus have a contradiction.

Case 2. Let $D(f)$ has no zeros. it is easily obtained that f is not a polynomial, otherwise $D(f)$ becomes a polynomial of degree at least 4 . Hence f is a nonpolynomial rational function. Now putting $l=0$ in (2.8) and proceeding as case 1.2 , we thus arrive at a contradiction.

The proof is complete.
Lemma 6. Let n, k be two positive integers such that $n \geq k+1$, and let f be a non-constant rational function with following properties :
(1) Zeros of f have multiplicity at least $k+2$ and poles (if exists) of f are of multiplicity at least 2 .
(2) Zeros of $f^{(k)}$ are not the b points of f, where b is a non-zero constant. then $D(f)-b$ has at least two distinct zeros.
Proof. We consider the following cases.
Case 1. $D(f)-b$ has exactly one zero z_{0} (say) with multiplicity l.
Case 1.1. f is a non-constant polynomial. It is easily obtained that $D(f)-b$ has zeros since all zeros of f have multiplicity at least $k+2$. Suppose that $D(f)-b$ has exactly one zero z_{0} with multiplicity l, then $D(f)-b$ has the form $D(f)-b=$ $A\left(z-z_{0}\right)^{l}$, where A is a non-zero constant, l is a positive integer. Obviously, $l \geq k+2$ since f has only zeros with multiplicity at least $k+2$. So

$$
(D(f))^{(k)}=f^{(k)}+a\left[\left(f^{(k)}\right)^{n}\right]^{(k)}=A l(l-1) \cdots(l-k+1)\left(z-z_{0}\right)^{l-k}
$$

On the other hand, the simple calculation implies that

$$
(D(f))^{(k)}=f^{(k)}+a\left[\left(f^{(k)}\right)^{n}\right]^{(k)}=f^{(k)}\left[1+Q\left(f^{(k)}\right)\right],
$$

where $Q\left(f^{(k)}\right)$ is given in Case 1.1 of lemma 5 . This shows that z_{0} is only zero of $(D(f))^{(k)}$. Note that a zero of $f^{(k)}$ is also a zero of $(D(f))^{(k)}=f^{(k)}\left[1+Q\left(f^{(k)}\right)\right]$ and $f^{(k)}$ is a nonconstant function. We thus conclude that z_{0} is a zero of $f^{(k)}$, which yields that $f\left(z_{0}\right)=b$. This is a contradiction that our assumptions. Thus $D(f)-b$ has at least two distinct zeros.
Case 1.2. f is a nonconstant rational function which is not a polynomial. By the hypothesis, we may put

$$
\begin{equation*}
f(z)=\frac{A\left(z-\alpha_{1}\right)^{p_{1}}\left(z-\alpha_{2}\right)^{p_{2}} \cdots\left(z-\alpha_{s}\right)^{p_{s}}}{\left(z-z_{1}\right)^{q_{1}}\left(z-z_{2}\right)^{q_{2}} \cdots\left(z-z_{t}\right)^{q_{t}}} \tag{2.11}
\end{equation*}
$$

where A is a non-zero constant, $p_{i}(i=1,2, \ldots, s), q_{j}(j=1,2, \ldots, t)$ are positive integers such that $p_{i} \geq k+2(i=1,2, \ldots, s)$ and $q_{j} \geq 2(j=1,2, \ldots, t)$.

For brevity, we denote

$$
p=\sum_{i=1}^{s} p_{i} \geq(k+2) s, \quad q=\sum_{j=1}^{t} q_{j} \geq 2 t
$$

From (2.11), it follows that

$$
\begin{equation*}
f^{(k)}(z)=\frac{A\left(z-\alpha_{1}\right)^{p_{1}-k}\left(z-\alpha_{2}\right)^{p_{2}-k} \cdots\left(z-\alpha_{s}\right)^{p_{s}-k} g_{1}(z)}{\left(z-z_{1}\right)^{q_{1}+k}\left(z-z_{2}\right)^{q_{2}+k} \cdots\left(z-z_{t}\right)^{q_{t}+k}} \tag{2.12}
\end{equation*}
$$

where $g_{1}(z)$ is a polynomial and $c_{k t-1}, \ldots, c_{1}, c_{0}$ are constants. Then (2.11) and (2.12) imply that $(f)_{\infty}=p-q$ and $\left(f^{(k)}\right)_{\infty}=p-k s+\operatorname{deg}(g(z))-q-k t$, By Lemma 3, it is easy to see that

$$
\begin{equation*}
\operatorname{deg}\left(g_{1}(z)\right) \leq k(s+t-1) \tag{2.13}
\end{equation*}
$$

From (2.11) and (2.12), then

$$
\begin{align*}
D(f) & =f+a\left(f^{(k)}\right)^{n} \tag{2.14}\\
& =\frac{\left(z-\alpha_{1}\right)^{p_{1}}\left(z-\alpha_{2}\right)^{p_{2}} \cdots\left(z-\alpha_{s}\right)^{p_{s}} g(z)}{\left(z-z_{1}\right)^{n\left(q_{1}+k\right)}\left(z-z_{2}\right)^{n\left(q_{2}+k\right) \cdots\left(z-z_{t}\right)^{n\left(q_{t}+k\right)}}}
\end{align*}
$$

where $g(z)=g_{1}^{n}(z)$ is a polynomial and
(2.15) $\operatorname{deg}(g(z)) \leq \max \left\{(n-1) q+n k t,(n-1) p-n k s+n \operatorname{deg}\left(g_{1}(z)\right)\right\}$.

Noting that $D(f)-b$ has exactly one zero z_{0} with multiplicity l, from (2.14) we have

$$
\begin{align*}
D(f) & =f+a\left(f^{(k)}\right)^{n} \tag{2.16}\\
& =b+\frac{B\left(z-z_{0}\right)^{l}}{\left(z-z_{1}\right)^{n\left(q_{1}+k\right)}\left(z-z_{2}\right)^{n\left(q_{2}+k\right) \cdots\left(z-z_{t}\right)^{n\left(q_{t}+k\right)}}},
\end{align*}
$$

where B is a non-zero number.
It follows from (2.14) and (2.16) that

$$
\begin{equation*}
(D(f))^{\prime}=\frac{\left(z-\alpha_{1}\right)^{p_{1}-1}\left(z-\alpha_{2}\right)^{p_{2}-1} \cdots\left(z-\alpha_{s}\right)^{p_{s}-1} h_{1}(z)}{\left(z-z_{1}\right)^{n\left(q_{1}+k\right)+1}\left(z-z_{2}\right)^{n\left(q_{2}+k\right)+1} \cdots\left(z-z_{t}\right)^{n\left(q_{t}+k\right)+1}} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
(D(f))^{\prime}=\frac{\left(z-z_{0}\right)^{l-1} h_{2}(z)}{\left(z-z_{1}\right)^{n\left(q_{1}+k\right)+1}\left(z-z_{2}\right)^{n\left(q_{2}+k\right)+1} \cdots\left(z-z_{t}\right)^{n\left(q_{t}+k\right)+1}}, \tag{2.18}
\end{equation*}
$$

where $h_{1}(z), h_{2}(z)$ are polynomials. Both (2.14) and (2.17) imply that $(D(f))_{\infty}=$ $p+\operatorname{deg}(g(z))-n q-n k t$ and $\left((D(f))^{\prime}\right)_{\infty}=p-s+\operatorname{deg}\left(h_{1}(z)\right)-n q-n k t-t$. Lemma 3 tells us that $\left((D(f))^{\prime}\right)_{\infty} \leq(D(f))_{\infty}-1$, then
(2.19) $\operatorname{deg}\left(h_{1}(z)\right) \leq s+t-1+\operatorname{deg}(g(z))=s+t-1+n \operatorname{deg}\left(g_{1}(z)\right)$.

Similarly (2.16) and (2.18) yields that

$$
\begin{equation*}
\operatorname{deg}\left(h_{2}(z)\right) \leq t \tag{2.20}
\end{equation*}
$$

Since $\alpha_{i} \neq z_{0}$ for $i=1,2, \ldots, s$, it follows from (2.17) and (2.18) that $p-s \leq$ $\operatorname{deg}\left(h_{2}(z)\right) \leq t$, which implies that $p \leq s+t \leq \frac{p}{k+2}+\frac{q}{2}$. One can deduce that

$$
\begin{equation*}
p<q \tag{2.21}
\end{equation*}
$$

Blow we divided into the following two cases again.
Case 1.2.1. $l \neq n q+n k t$. It follows from (2.14) that

$$
\begin{equation*}
n q+n k t \leq p+\operatorname{deg}(g(z)) . \tag{2.22}
\end{equation*}
$$

If $\operatorname{deg}(g(z)) \leq(n-1) q+n k t$, we thus from (2.22) obtain that $n q+n k t \leq$ $p+(n-1) q+n k t$, which implies that $q \leq p<q$ by (2.21). This is impossible.

If $\operatorname{deg}(g(z)) \leq(n-1) p-n k s+n \operatorname{deg}\left(g_{1}(z)\right)$, since $\operatorname{deg}\left(g_{1}(z)\right) \leq k(s+t-1)$, hence $n q+n k t \leq(n-1) p-n k s++n k(s+t-1)$, we have $q \leq p-1<q-1$ by (2.21). We thus arrive at a contradiction.

Case 1.2.2. $l=n q+n k t$. It is obtained from (2.17) and (2.18) that

$$
\begin{equation*}
l-1 \leq \operatorname{deg}\left(h_{1}(z)\right) \leq s+t-1+\operatorname{deg}(g(z)) \tag{2.23}
\end{equation*}
$$

If $\operatorname{deg}(g(z)) \leq(n-1) q+n k t$, we thus from (2.23) obtain that $l \leq s+t+\operatorname{deg}(g(z))$, which implies that $n q+n k t \leq s+t+(n-1) q+n k t$. We have $q \leq s+t \leq \frac{p}{k+2}+\frac{q}{2} \leq$ $\frac{q}{k+2}+\frac{q}{2}<q$ by (2.21). This is impossible.

If $\operatorname{deg}(g(z)) \leq(n-1) p-n k s+n \operatorname{deg}\left(g_{1}(z)\right) \leq(n-1) p-n k s+n k(s+t-1)$. Since $\operatorname{deg}\left(g_{1}(z)\right) \leq k(s+t-1)$ and $l=n q+n k t$, hence (2.23) implies that $n q+n k t \leq$ $(n-1) p-n k s++n k(s+t-1)$, we have $q \leq p-1<q-1$ by (2.21). This is a contradiction.

Case 2. Let $D(f)-b$ has no zero. Then f can not be a polynomial, otherwise $D(f)$ becomes a polynomial of degree at least 4 . Hence f is non polynomial rational function. Now putting $l=0$ in (2.16) and proceeding as case 1.2 of Lemma 6, we have a contradiction. The proof of Lemma 6 is completed.

3. Proof of Theorem

Suppose that F is not normal in D, then there exists at least one point z_{0} such that F is not normal at the point z_{0}. Without loss of generality we assume that $z_{0}=0$ and $D=\triangle$. We shall consider two cases.

Case 1. $b=0$. Recall that all zeros of f have multiplicity at least $k+2$, then, by Lemma 1 , there exist a sequence points $z_{j} \rightarrow 0(j \rightarrow \infty)$; a sequence of positive numbers $\rho_{j}, \rho_{j} \rightarrow 0$ and a sequence of functions $f_{j}, f_{j} \in F$ such that $g_{j}(\xi)=$ $\rho_{j}^{-\frac{n k}{n-1}} f_{j}\left(z_{j}+\rho_{j} \xi\right) \rightarrow g(\xi)$ locally uniformly with respect to spherical metric on \mathbb{C}, where $g(\xi)$ is a non-constant meromorphic function and all zeros of $g(\xi)$ have multiplicity at least $k+2$.

From the above, we obtain

$$
\begin{equation*}
g_{j}^{(k)}=\rho_{j}^{-\frac{k}{n-1}} f_{j}^{(k)} \rightarrow g^{(k)}, \tag{3.1}
\end{equation*}
$$

and

$$
\rho_{j}^{-\frac{n k}{n-1}}\left[f_{j}+a\left(f_{j}^{(k)}\right)^{n}\right]=g_{j}+a\left(g_{j}^{(k)}\right)^{n} \rightarrow g+a\left(g^{(k)}\right)^{n}
$$

also locally uniformly with respect to the spherical metric, that is,

$$
\begin{equation*}
\rho_{j}^{-\frac{n k}{n-1}}\left[D\left(f_{j}\right)\right]=D\left(g_{j}\right) \rightarrow D(g) \tag{3.2}
\end{equation*}
$$

also locally uniformly with respect to the spherical metric.
If $D(g)=g+a\left(g^{(k)}\right)^{n} \equiv 0$, then g clearly has no poles and is not any polynomial with order at least $k+2$, so g is a transcendental entire function. By Lemma $2, g$ is of exponential type. Noting that $g \neq 0$, then g has the form $g(\xi)=e^{c \xi+d}$, where $c(c \neq 0), d$ are two constants. Hence

$$
e^{c \xi+d}+a\left[e^{c \xi+d}\right]^{n}=e^{c \xi+d}\left[1+a c^{n k} e^{(n-1)(c \xi+d)}\right] \equiv 0
$$

So we get $e^{(n-1)(c \xi+d)} \equiv-\frac{1}{a c^{n k}}$. This is a contradiction since $n \geq k+1 \geq 2$.
Since g is a non-constant meromorphic function, by Lemmas 4 and 5 , we deduce that $D(g)=g+a\left(g^{(k)}\right)^{n}$ has at least two distinct zeros.

On the other hand, we conclude that $D(g)=g+a\left(g^{(k)}\right)^{n}$ has just a unique zero.

Suppose that there exist two distinct zeros ξ_{0} and ξ_{0}^{*} and choose $\delta(\delta>0)$ small enough such that $D\left(\xi_{0}, \delta\right) \bigcap D\left(\xi_{0}^{*}, \delta\right)=\emptyset$, where $D\left(\xi_{0}, \delta\right)=\left\{\xi:\left|\xi-\xi_{0}\right|<\delta\right\}$ and $D\left(\xi_{0}^{*}, \delta\right)=\left\{\xi:\left|\xi-\xi_{0}^{*}\right|<\delta\right\}$.

From (3.1) and (3.2), by Hurwitz's theorem, there exist points $\xi_{j} \in D\left(\xi_{0}, \delta\right)$, $\xi_{j}^{*} \in D\left(\xi_{0}^{*}, \delta\right)$ such that for sufficiently large j

$$
\begin{aligned}
& D\left(f_{j}\left(z_{j}+\rho_{j} \xi_{j}\right)\right)=f_{j}\left(z_{j}+\rho_{j} \xi_{j}\right)+a\left[f_{j}^{(k)}\left(z_{j}+\rho_{j} \xi_{j}\right)\right]^{n}=0 \\
& D\left(f_{j}\left(z_{j}+\rho_{j} \xi_{j}^{*}\right)\right)=f_{j}\left(z_{j}+\rho_{j} \xi_{j}^{*}\right)+a\left[f_{j}^{(k)}\left(z_{j}+\rho_{j} \xi_{j}^{*}\right)\right]^{n}=0
\end{aligned}
$$

By the hypothesis that for each pair of functions f and g in $F, D(f)$ and $D(g)$ share 0 , we know that for any positive integer m

$$
\begin{aligned}
D\left(f_{m}\left(z_{j}+\rho_{j} \xi_{j}\right)\right) & =f_{m}\left(z_{j}+\rho_{j} \xi_{j}\right)+a\left[f_{m}^{(k)}\left(z_{j}+\rho_{j} \xi_{j}\right)\right]^{n}=0 \\
D\left(f_{m}\left(z_{j}+\rho_{j} \xi_{j}^{*}\right)\right) & =f_{m}\left(z_{j}+\rho_{j} \xi_{j}^{*}\right)+a\left[f_{m}^{(k)}\left(z_{j}+\rho_{j} \xi_{j}^{*}\right)\right]^{n}=0
\end{aligned}
$$

Fix m, take $j \rightarrow \infty$, and note $z_{j}+\rho_{j} \xi_{j} \rightarrow 0, z_{j}+\rho_{j} \xi_{j}^{*} \rightarrow 0$, then

$$
D\left(f_{m}(0)\right)=f_{m}(0)+a\left(f_{m}^{(k)}\right)^{n}(0)=0
$$

Since the zeros of $D\left(f_{m}\right)=f_{m}+a\left(f_{m}^{(k)}\right)^{n}$ has no accumulation point, so

$$
z_{j}+\rho_{j} \xi_{j}=0, \quad z_{j}+\rho_{j} \xi_{j}^{*}=0
$$

Hence

$$
\xi_{j}=-\frac{z_{j}}{\rho_{j}}, \quad \xi_{j}^{*}=-\frac{z_{j}}{\rho_{j}}
$$

which contradicts the fact that $\xi_{j} \in D\left(\xi_{0}, \delta\right), \xi_{j}^{*} \in D\left(\xi_{0}^{*}, \delta\right)$ and $D\left(\xi_{0}, \delta\right) \bigcap D\left(\xi_{0}^{*}, \delta\right)=$ \emptyset. So $g+a\left(g^{(k)}\right)^{n}$ has just a unique zero. This contradicts the fact that $D(g)=g+a\left(g^{(k)}\right)^{n}$ has at least two distinct zeros.

Case 2. $b \neq 0$. By Lemma 1 again, there exist a sequence of points $z_{j} \rightarrow 0(j \rightarrow \infty)$; a sequence of positive numbers $\rho_{j}, \rho_{j} \rightarrow 0$ and a sequence of functions $f_{j}, f_{j} \in F$ such that $g_{j}(\xi)=f_{j}\left(z_{j}+\rho_{j} \xi\right) \rightarrow g(\xi)$ locally uniformly with respect to spherical metric on \mathbb{C}, where $g(\xi)$ is a non-constant meromorphic function. Moreover g is of order of at most 2 and only zeros of g have multiplicity at least $k+2$ and poles of g have multiplicity at least 2 .

From the above discussion, we have

$$
\begin{equation*}
D\left(f_{j}\left(z_{j}+\rho_{j} \xi\right)\right)-b=D\left(g_{j}(\xi)\right) \rightarrow D(g(\xi))-b \quad \text { as } \quad j \rightarrow \infty \tag{3.3}
\end{equation*}
$$

also locally uniformly with respect to the spherical metric.
Now we can conclude that : if $g^{(k)}\left(\xi_{0}\right)=0$ then $g\left(\xi_{0}\right) \neq b$. Suppose that $g\left(\xi_{0}\right)=b$, then by Hurwitzs theorem, there exists $\xi_{j} \rightarrow \xi_{0}$ for $j \rightarrow \infty$ such that $g_{j}\left(\xi_{j}\right)=f_{j}\left(z_{j}+\rho_{j} \xi_{j}\right)=b$. It follows from $g^{(k)}\left(\xi_{0}\right)=0$ that $g_{j}^{(k)}\left(\xi_{j}\right)=0$, which implies $\rho_{j}^{k} f_{j}^{(k)}\left(z_{j}+\rho_{j} \xi_{j}\right)=0$. We thus have $f_{j}^{(k)}\left(z_{j}+\rho_{j} \xi_{j}\right)=0$. By condition of theorem 1 , we deduce that $f_{j}\left(z_{j}+\rho_{j} \xi_{j}\right) \neq b$, which contradicts that $f_{j}\left(z_{j}+\rho_{j} \xi_{j}\right)=b$.

If $D(g(\xi)) \equiv b$. The argument in this case is completely analogous to the proof of $D(g(\xi))=g(\xi)+a\left(g^{(k)}\right)^{n}(\xi) \equiv 0$ and then we have a contradiction. So we omit its proof.

We derive that $D(g(\xi))-b$ has at least two zeros by Lemmas 4 and 6 since g is a non-constant meromorphic function.

On the other hand, we can claim that $D(g(\xi))-b$ has just a unique zero. Suppose that there exist two distinct zeros ξ_{0} and ξ_{0}^{*} and choose $\delta(\delta>0)$ small enough such that $D\left(\xi_{0}, \delta\right) \bigcap D\left(\xi_{0}^{*}, \delta\right)=\emptyset$, where $D\left(\xi_{0}, \delta\right)=\left\{\xi:\left|\xi-\xi_{0}\right|<\delta\right\}$ and $D\left(\xi_{0}^{*}, \delta\right)=\left\{\xi:\left|\xi-\xi_{0}^{*}\right|<\delta\right\}$.

By (3.3) and Hurwitz's theorem, there exist points $\xi_{j} \in D\left(\xi_{0}, \delta\right), \xi_{j}^{*} \in D\left(\xi_{0}^{*}, \delta\right)$ such that for sufficiently large j

$$
\begin{aligned}
& D\left(f_{j}\left(z_{j}+\rho_{j} \xi_{j}\right)\right)-b=0 \\
& D\left(f_{j}\left(z_{j}+\rho_{j} \xi_{j}^{*}\right)\right)-b=0
\end{aligned}
$$

By the hypothesis that for each pair of functions f and g in $F, D(f)$ and $D(g)$ share b, we know that for any positive integer m

$$
\begin{aligned}
& D\left(f_{m}\left(z_{j}+\rho_{j} \xi_{j}\right)\right)-b=0 \\
& D\left(f_{m}\left(z_{j}+\rho_{j} \xi_{j}^{*}\right)\right)-b=0
\end{aligned}
$$

Fix m, take $j \rightarrow \infty$, and note $z_{j}+\rho_{j} \xi_{j} \rightarrow 0, z_{j}+\rho_{j} \xi_{j}^{*} \rightarrow 0$, then

$$
D\left(f_{m}(0)\right)-b=0
$$

Since the zeros of $D\left(f_{m}\right)-b$ has no accumulation point, so

$$
z_{j}+\rho_{j} \xi_{j}=0, \quad z_{j}+\rho_{j} \xi_{j}^{*}=0
$$

Hence

$$
\xi_{j}=-\frac{z_{j}}{\rho_{j}}, \quad \xi_{j}^{*}=-\frac{z_{j}}{\rho_{j}}
$$

This contradicts the fact that $\xi_{j} \in D\left(\xi_{0}, \delta\right), \xi_{j}^{*} \in D\left(\xi_{0}^{*}, \delta\right)$ and $D\left(\xi_{0}, \delta\right) \bigcap D\left(\xi_{0}^{*}, \delta\right)=$ \emptyset. So $a\left(g^{(k)}\right)^{n}-b$ has just a unique zero, which contradicts that $D(g)-b$ has at least two zeros. This proves the Theorem 1.
Acknowledgements. The author would like to thank Professor Qiao Jian-yong and Professor Li Yu-hua for their useful conversations and for their help in preparing the manuscript.

References

[1] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Revista Matemtica Iberoamericana, 11(2)(1995), 355-375.
[2] H. H. Chen and Y. X. Gu, Y, An improvement of Marty criterion and its application, Sci China Ser A, 36(1993), 674-681.
[3] J. Cline and Y. K. Hayman, The spherical derivatives of integral and meromorphic functins, Comment Math Hev, 40(1996), 117-148.
[4] G. Datt and S. Kumar, Normality of meromorphic functions with multiple zeros and poles, arXiv:1305.6214V1.
[5] H. K. Hayman, Meromorphic functions, Clarendon, Oxford, 1964.
[6] X. C. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc, 32(2000), 325-331.
[7] D. W. Meng and P. C. Hu, Normality criteria of meromorphic functons sharing one value, J. Math. Anal. Appl., 381(2011), 724-731.
[8] J. Schiff, Normal families, Springer-Verlag, Berlin, 1993.
[9] W. Schwick, Sharing Values and Normality, Archiv der Mathematik, 59(1992),50-54.
[10] Y. Xu, F. Q. Wu and L. W. Liao, Picard values and normal families of meromorphic functions, Proc. Roy. Soc. Edinburgh Sect A, 139(2009), 1091-1099.
[11] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Science Press/Kluwer Academic, Beijing/New York, 2003.
[12] S. Zeng and I. Lahiri, A normality criterion for meromorphic functions, Kodai Math. J., 35(2012), 105-114.

