DOI QR코드

DOI QR Code

Isolation of Chlorella vulgaris Mutants Producing High Lipid and their Characterization

지질 고 생산성 Chlorella vulgaris 변이주 분리 및 특성 분석

  • Choi, Soo-Jeong (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University) ;
  • Park, Hyun-Jin (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University) ;
  • Lee, Jae-Hwa (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University)
  • 최수정 (신라대학교 의생명과학대학 제약공학과) ;
  • 박현진 (신라대학교 의생명과학대학 제약공학과) ;
  • 이재화 (신라대학교 의생명과학대학 제약공학과)
  • Received : 2014.12.31
  • Accepted : 2015.07.13
  • Published : 2015.10.10

Abstract

Micro-algae Chlorella vulgaris (C. vulgaris) is an important source for bio-diesel because of the high content of neutral lipids. In this study, we intended to induce mutants of C. vulgaris by UV-B irradiation. C. vulgaris was first exposed to UV-B for 1, 2, 3, 4, 5 min. As the UV-B exposure time increased, the cell viability and pigment content were decreased. Mutants of C. vulgaris were also induced through ultraviolet irradiation and two strains were selected with respect to lipid contents, where were named as 'UM10', 'UM15'. They were then cultivated in the same way as to the wild type. After 21 days of cultivation, the cell growth, dry cell weight, pigment contents, and lipid contents were measured for investigating characteristics of mutants. As a result, the cell growth and dry cell weight of both mutants increased about 1.4 and 1.5 times, respectively compared with those of wild type. In addition, chlorophyll and carotenoid contents were measured in order to investigate pigment contents in micro-algae through photosynthesis. It was shown that chlorophyll and carotenoid contents of both mutants decreased about 10% compared to those of wild type. Lipid contents in UM10 and UM15 increased about 1.2 and 1.5 times, respectively compared to that of wild type.

미세조류인 Chlorella vulgaris (C. vulgaris)는 다른 미세조류에 비해 다량의 지질을 함유한다. 본 연구는 자외선 조사를 통해 변이주를 유도하고자 하였다. C. vulgaris에 자외선을 1, 2, 3, 4, 5 min간 조사하였으며 자외선 조사 시간에 비례하여 세포 생존율 및 색소 함량이 감소함을 확인하였다. 자외선 조사를 통해 C. vulgaris의 변이주를 유도하였으며, 지질 축적량을 기준으로 두 개의 균주를 선별하였다. 선별한 변이주는 UM10, 15로 명명하였으며, 야생균주와 동일한 환경에서 배양하였다. 변이주의 특성 분석을 위해 21일간 배양 후 세포 생장률, 건조 중량, 색소 함량, 지질 함량을 측정하였다. 그 결과, 두 종의 변이주는 야생균주에 비해 약 1.4배 높은 세포 생장률을 보였으며, 건조 중량은 약 1.5배 증가하였다. 광합성을 통한 미세조류 내 색소 함량을 알아보기 위해 클로로필과 카로티노이드 함량을 측정하였다. 변이주의 클로로필 및 카로티노이드 함량 모두 야생균주에 비해 약 10% 감소함을 확인하였다. 변이주의 지질 함량은 야생균주에 비해 약 1.2, 1.5배 증가하였다.

Keywords

References

  1. A. Widjaja, C.-C. Chien, and Y.-H. Ju, Study of increasing lipid production from fresh water microalgae Chlorella vulgaris, J. Taiwan Inst. Chem. Eng., 40, 13-20 (2009). https://doi.org/10.1016/j.jtice.2008.07.007
  2. E. Komor and W. Tanner, The determination of the mambrane potential of Chlorella vulgaris, Eur. J. Biochem., 70, 197-204 (1976). https://doi.org/10.1111/j.1432-1033.1976.tb10970.x
  3. Z.-Y. Liu, G.-C. Wang, and B.-C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol., 99, 4717-4722 (2008). https://doi.org/10.1016/j.biortech.2007.09.073
  4. R. L. Mendes, H. L. Fernandes, J. P. Coelho, E. C. Reis, J. M. S. Cabral, J. M. Novais, and A. F. Palavra, Supercritical $CO_2$ extraction of carotenoids and other lipids from Chlorella vulgaris, Food Chem., 53, 99-103 (1995). https://doi.org/10.1016/0308-8146(95)95794-7
  5. L. E. de-Bashan, J.-P. Hernandez, T. Morey, and Y. Bashan, Microalgae growth-promoting bacteria as "helpers" for microalgae: a novel approach for removing ammonium and phosphorus for municipal wastewater, Water Res., 38, 466-474 (2004). https://doi.org/10.1016/j.watres.2003.09.022
  6. J. Kim, G. Yoo, H. Lee, J. Lim, K. Kim, C. W. Kim, M. S. Park, and J.-W. Yong, Methods of downstream processing for the production of biodiesel from microalgae, Biotechnol. Adv., 31, 862-876 (2013). https://doi.org/10.1016/j.biotechadv.2013.04.006
  7. S.-J. Choi, Y.-H. Kim, A. Kim, and J.-H. Lee, Arthrospira platensis mutants containing high lipid content by electron beam irradiation and analysis of its fatty acid composition, Appl. Chem. Eng., 24(6), 628-632 (2013). https://doi.org/10.14478/ace.2013.1085
  8. J.-H. Kim, H.-J. Park, Y.-H. kim, H. Joo, S.-H. Lee, and J.-H. Lee, UV-induced mutagenesis of Nannochloropsis oculata for the increase of lipid accumulation and its characterization, Appl. Chem. Eng., 24(2), 155-160 (2013).
  9. H.-Y. Jeong and K.-R. Kim, Strain improvement based on ion beam induced mutagenesis, Kor. J. Microbiol. Biotechnol., 38, 235-243 (2010).
  10. E. C. Friedberg, DNA damage and repair, Nature, 421, 436-440 (2003). https://doi.org/10.1038/nature01408
  11. H.-J. Park, Y.-H. Kim, and J.-H. Lee, Characterization of Arthrospira platensis mutants generated by UV-B irradiation, Appl. Chem. Eng., 23, 496-500 (2012).
  12. Y.-H. Kim and J.-H. Lee, Isolation of Arthrospira platensis mutants producing high lipid and phycobiliproteins, Kor. Soc. Biotechnol. Bioeng. J., 27, 172-176 (2012).
  13. A. M. Abo-Shady, B. A. Al-ghaffar, M. M. H. Rahhal, and H. A. Abd-El Monem, Biological control of faba bean pathogenic fungi by three cyanobacterial filtrates, Pakistan J. Biol. Sci., 10, 3029-3038 (2007). https://doi.org/10.3923/pjbs.2007.3029.3038
  14. S.-J. Choi, Y.-H. Kim, I.-H. Jung, and J.-H. Lee, Effect of nano bubble oxygen and hydrogen water on microalgae, Appl. Chem. Eng., 25(3), 324-329 (2014). https://doi.org/10.14478/ace.2014.1038
  15. S.-R. Moon, B.-K. Son, J.-O. Yang, J.-S. Woo, C. M. Yoom, and G.-H. Kim, Effect of Electron-beam Irradiation on Development and Reproduction of Bemisia tabaci, Myzus persicae, Plutella xylostella and Tetranychus urticae, Kor. J. Appl. Entomol., 49(2), 129-137 (2010). https://doi.org/10.5656/KSAE.2010.49.2.129
  16. W. Chen, M. Sommerfeld, and Q. Hu, Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae, Bioresour. Technol., 102, 135-141 (2011). https://doi.org/10.1016/j.biortech.2010.06.076
  17. E. Bertozzini, L. Galluzzi, A. Penna, and M. magnani, Application of the standard addition method for the absolute quantification of newtural lipids in microalge using Nile red, J. Microbiol. Methods., 87, 17-23 (2011). https://doi.org/10.1016/j.mimet.2011.06.018
  18. D. F. Gleason, Differential effects of ultraviolet radiation on green and brown morphs of the caribbean coral Porites astreoides, Limnol. Oceanogr., 38(7), 1452-1463 (1993). https://doi.org/10.4319/lo.1993.38.7.1452
  19. R. D. Vinebrooke and P. R. Leavitt, Effects of ultraviolet radiation on periphyton in an alpine lake, Limnol. Oceanogr., 41(5), 1035-1040 (1996). https://doi.org/10.4319/lo.1996.41.5.1035
  20. M. S. Estevez, G. Malanga, and S. Puntarulo, UV-B effects on antarctic Chlorella sp. cells, J. Photochem. Photobiol. B., 62, 19-25 (2001). https://doi.org/10.1016/S1011-1344(01)00157-9
  21. R. Sharma, Impact of solar UV-B on tropical ecosystems and agriculture. Case study: Effect of UV-B on rice, Proceedings of SEAWPIPT98 & SAEWPIT2000, 1, 92-101 (2001).
  22. S. L. Dube and W. Vidaver, Photosynthetic competence of plantlets grown in vitro. An automated system for measurement of photosynthesis in vitro, Physiol. Plant., 84(3), 409-416 (1992). https://doi.org/10.1111/j.1399-3054.1992.tb04684.x
  23. S. Boussiba, B. Wang, P. P. Yuan, A. Zarka, and F. Chen, Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses, Biotechnol. Lett., 21, 601-604 (1999). https://doi.org/10.1023/A:1005507514694
  24. S. H. Oh, J. G. Han, N. Y. Kim, J. S. Cho, T. B. Yim, S. Y. Lee, and H. Y. Lee, Cell Growth and Lipid Production from Fed-batch Cultivation of Chlorella minutissima according to Culture Conditions, Kor. Soc. Biotechnol. Bioeng. J., 24(4), 377-382 (2009).