DOI QR코드

DOI QR Code

THE TeV GAMMA-RAY MILKY WAY

  • ROWELL, GAVIN (School of Physical Sciences, University of Adelaide)
  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

This review summarises the current status of the Galactic TeV ($10^{12}$ eV) gamma-ray source population. It also briefly looks at the future beyond the current generation of TeV gamma-ray facilities, and highlights the role of the interstellar medium (ISM) in helping to resolve some of the challenges in interpreting the wealth of results which have been found in recent years.

Keywords

References

  1. Abdo, A. A., et al., 2007, TeV Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro, ApJ, 664, L91 https://doi.org/10.1086/520717
  2. Abdo, A., et al., 2013, The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars, ApJS, 208, 17 https://doi.org/10.1088/0067-0049/208/2/17
  3. Abramowski, A., et al., 2012, Identification of HESS J1303-631 as a Pulsar Wind Nebula through Gamma-ray, X-ray, and Radio Observations, A&A, 548, A46 https://doi.org/10.1051/0004-6361/201219814
  4. Abramowski, A., et al., 2011, Very-high-energy Gammaray Emission from the Direction of the Galactic Globular Cluster Terzan 5, A&A, 531, L18 https://doi.org/10.1051/0004-6361/201117171
  5. Ackermann, M., et al, 2013, Detection of the Characteristic Pion-Decay Signature in Supernova Remnants, Science, 339, 807 https://doi.org/10.1126/science.1231160
  6. Acero, F., et al., 2013, Gamma-ray Signatures of Cosmic Ray Acceleration, Propagation, and Confinement in the Era of CTA, APh 43, 276
  7. Aharonian. F. & Atoyan. A., 1996, On the Emissivity of ${\pi}^{\circ}$-decay Gamma Radiation in the Vicinity of Accelerators of Galactic Cosmic-rays, A&A, 309, 917
  8. Aharonian. F., et al., 2006, Discovery of Very-high-energy Gamma-rays from the Galactic Centre Ridge, Nature, 439, 69
  9. Aharonian. F., et al., 2006a, The HESS Survey of the Inner Galaxy in Very High Energy Gamma Rays, ApJ, 636, 777 https://doi.org/10.1086/498013
  10. Aharonian. F. A., et al., 2006b, Energy Dependent Gammaray Morphology in the Pulsar Wind Nebula HESS J1825-137, A&A, 460, 365 https://doi.org/10.1051/0004-6361:20065546
  11. Aharonian, F., et al., 2008, Discovery of Very High Energy Gamma-ray Emission Coincident with Molecular Clouds in the W 28 (G6.4+0.1) Field, A&A 481, 401 https://doi.org/10.1051/0004-6361:20077765
  12. Albert, J., et al., 2007a, Discovery of Very High Energy Gamma Radiation from IC 443 with the MAGIC Telescope, ApJ, 664, L87 https://doi.org/10.1086/520957
  13. Albert, J., et al., 2007b, Very High Energy Gamma-Ray Radiation from the Stellar Mass Black Hole Cygnus X-1, ApJ, 665, L51 https://doi.org/10.1086/521145
  14. Aleksic, J., et al., 2012, Phase-resolved Energy Spectra of the Crab Pulsar in the Range of 50-400 GeV Measured with the MAGIC Telescopes, A&A, 540, 69 https://doi.org/10.1051/0004-6361/201118166
  15. Aliu, E., et al., 2013, Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G78.2+2.1, ApJ, 770, 93 https://doi.org/10.1088/0004-637X/770/2/93
  16. Aliu, E., et al., 2011, Detection of Pulsed Gamma Rays Above 100 GeV from the Crab Pulsar, Science, 334, 69 https://doi.org/10.1126/science.1208192
  17. Amato, E., et al., 2003, Signatures of High Energy Protons in Pulsar Winds, A&A, 402, 827 https://doi.org/10.1051/0004-6361:20030279
  18. Atoyan, A. & Aharonian, F., 1996, On the Mechanisms of Gamma Radiation in the Crab Nebula, MNRAS, 278, 525 https://doi.org/10.1093/mnras/278.2.525
  19. Baade, W. & Zwicky, F., 1934, On Super-Novae, Proc. Nat. Acad. Sciences, 20, 259 https://doi.org/10.1073/pnas.20.5.259
  20. Bednarek, W. & Protheroe, R.J., 1997, Gamma Rays and Neutrinos from the Crab Nebula Produced by Pulsar Accelerated Nuclei, PhRvL, 79, 2616
  21. Bednarek, W. & Sobczak, T., 2014, Misaligned TeV Gammaray Sources in the Vicinity of Globular Clusters, MNRAS, 445, 2842 https://doi.org/10.1093/mnras/stu1966
  22. Bell, A. R., 2004, Turbulent Amplification of Magnetic Field and Diffusive Shock Acceleration of Cosmic Rays, MNRAS, 353, 550 https://doi.org/10.1111/j.1365-2966.2004.08097.x
  23. Braiding. C., et al., 2014, The Mopra CO Survey, these proceedings
  24. Buehler, R. & Blandford, R., 2014, The Surprising Crab Pulsar and its Nebula: a Review, RPPh, 77, 6901
  25. Burton, M., et al., 2013, The Mopra Southern Galactic Plane CO Survey, PASA, 30, 44 https://doi.org/10.1017/pasa.2013.22
  26. Dame, T., et al., 2001, The Milky Way in Molecular Clouds:A New Complete CO Survey, ApJ, 547, 792 https://doi.org/10.1086/318388
  27. Drury, L. O. C., 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, RPPh, 46, 973
  28. Drury, L. O. C., Aharonian, F. A., & Voelk, H. J., 1994, The Gamma-ray Visibility of Supernova Remnants. A test of Cosmic Ray Origin, A&A, 287, 959D
  29. Dubus, G., 2013, Gamma-ray Binaries and Related Systems, A&ARv, 21, 64 https://doi.org/10.1007/s00159-013-0064-5
  30. Eger, P., et al., 2011, A Multi-wavelength Study of the Unidentified TeV Gamma-ray Source HESS J1626-490, A&A, 526, A82 https://doi.org/10.1051/0004-6361/201015727
  31. Fukuda, T., et al., 2014, Interstellar Protons in the TeV Gamma-Ray SNR HESS J1731-347: Possible Evidence for the Coexistence of Hadronic and Leptonic gamma-Rays, ApJ, 788, 94 https://doi.org/10.1088/0004-637X/788/1/94
  32. Fukui, Y., et al., 2012, A Detailed Study of the Molecular and Atomic Gas Toward the Gamma-Ray Supernova Remnant RX J1713.7-3946: Spatial TeV gamma-Ray and Interstellar Medium Gas Correspondence, ApJ, 746, 82 https://doi.org/10.1088/0004-637X/746/1/82
  33. Gabici, S., et al., 2007, Gamma Rays from Molecular Clouds, A&SS, 309, 365 https://doi.org/10.1007/s10509-007-9427-6
  34. Gabici, S., et al., 2009, Broad-band Non-thermal Emission from Molecular Clouds Illuminated by Cosmic Rays from Nearby Supernova Remnants, MNRAS, 396, 1629 https://doi.org/10.1111/j.1365-2966.2009.14832.x
  35. Gallant, Y. & Arons, J., 1994, Structure of Relativistic Shocks in Pulsar Winds: A Model of the Wisps in the Crab Nebula, ApJ, 435, 230 https://doi.org/10.1086/174810
  36. Gaensler, B., et al., 2002, Chandra Imaging of the X-Ray Nebula Powered by Pulsar B1509-58, ApJ, 568, 878 https://doi.org/10.1086/339057
  37. Gunn, J. & Ostriker, J., 1969, Acceleration of High Energy Cosmic-Rays By Pulsars, PhRvL, 22, 728
  38. Horns, D., et al., 2006, Nucleonic Gamma-ray Production in Vela X, A&A, 451, L51 https://doi.org/10.1051/0004-6361:20065116
  39. Ioka, K. & Meszaros, P., 2010, Hypernova and Gamma-Ray Burst Remnants as TeV Unidentified Sources, ApJ, 709, 1337 https://doi.org/10.1088/0004-637X/709/2/1337
  40. Kargaltsev, O., et al., 2013, Gamma-ray and X-ray Properties of Pulsar Wind Nebulae and Unidentified Galactic TeV Sources, arXiv:1305.2552 in proc. "The Universe Evo-lution. Astrophysical and Nuclear Aspects".
  41. Maxted N., et al., 2012, 3 to 12 millimetre studies of dense gas towards the western rim of supernova remnant RXJ1713.7-3946 MNRAS 422, 2230 https://doi.org/10.1111/j.1365-2966.2012.20766.x
  42. Malkov M., et al., 2013, Analytic Solution for Self-regulated Collective Escape of Cosmic Rays from Their Acceleration Sites ApJ 768, 73 https://doi.org/10.1088/0004-637X/768/1/73
  43. McClure-Griths N., et al., 2005, The Southern Galactic Plane Survey: H I Observations and Analysis ApJS 158, 178 https://doi.org/10.1086/430114
  44. Nava & Gabici S., 2013, Anisotropic cosmic ray diffusion and gamma-ray production close to supernova remnants, with an application to W28 MNRAS 429, 1643 https://doi.org/10.1093/mnras/sts450
  45. Nicholas B., et al., 2012, A 7mm line survey of the shocked and disrupted molecular gas towards the W28 field TeV gamma-ray sources MNRAS 419, 251 https://doi.org/10.1111/j.1365-2966.2011.19688.x
  46. Onishi T., et al., 2008, New Views of Molecular Gas Distribution and Star Formation of the Southern Sky with NANTEN in 'Mapping the Galaxy and Nearby Galaxies', Astrophys. and Spa. Sci. Proc., Springer p11
  47. Parizot E., et al., 2004, Superbubbles and energetic particles in the Galaxy A&A 424, 747 https://doi.org/10.1051/0004-6361:20041269
  48. Rieger F., et al., 2013, TeV Astronomy Front. Phys. 8, 714
  49. Reimer A., et al., 2006, Nonthermal High-Energy Emission from Colliding Winds of Massive Stars ApJ 644, 1118 https://doi.org/10.1086/503598
  50. Tanaka S., et al., 2010, A model of the spectral evolution of pulsar wind nebulae ApJ 715, 1248 https://doi.org/10.1088/0004-637X/715/2/1248
  51. Voisin, F., et al., 2014, Molecular gas towards HESS J1825-137 Intl. J. Mod. Phys. 28, 1460199
  52. Yamazaki R., et al., 2006, TeV Gamma-Ray from Old Supernova Remnants MNRAS 371, 1975 https://doi.org/10.1111/j.1365-2966.2006.10832.x