DOI QR코드

DOI QR Code

HOST GALAXY OF TIDAL DISRUPTION OBJECT, SWIFT J1644+57

  • YOON, YONGMIN (Center for the Exploration of the Origin of the Universe (CEOU) Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • IM, MYUNGSHIN (Center for the Exploration of the Origin of the Universe (CEOU) Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • LEE, SEONG-KOOK (Center for the Exploration of the Origin of the Universe (CEOU) Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • PAK, SOOJONG (School of Space Research, Kyung Hee University)
  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

We analyze the host galaxy of the tidal disruption object, Swift J1644+57, based on long-term optical to NIR data obtained with CQUEAN and UKIRT WFCAM observations. We decompose the bulge component using high resolution HST WFC3 images. We conclude that the host galaxy is bulge dominant. We investigate optical to NIR light curves and estimate the multi-band fluxes of the host galaxy. We fit spectral energy distribution (SED) models in order to determine the stellar mass. Finally, we estimate the mass of the black hole in the center of the host galaxy based on several scale relations.

Keywords

References

  1. Abramowicz, M. A. & Liu, F. K., 2012, Mass Estimate of the Swift J 164449.3+573451 Supermassive Black Hole Based on the 3:2 QPO Resonance ypothesis, A&A, 548, 3A https://doi.org/10.1051/0004-6361/201220254
  2. Burrows, D. N., Kennea, J. A., & Ghisellini, G., et al., 2011, Relativistic Jet Activity from the Tidal Disruption of a Star by a Massive Black Hole, Nature, 476, 421 https://doi.org/10.1038/nature10374
  3. Calzetti, D., Armus, L., & Bohlin, R. C., et al., 2000, The Dust Content and Opacity of Actively Star-forming Galaxies, APJ, 533, 682 https://doi.org/10.1086/308692
  4. Dale, D. A. & Helou, G., 2002, The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths, APJ, 576, 159 https://doi.org/10.1086/341632
  5. Kormendy, J. & Ho, L. C., 2013, Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies, ARA&A, 51, 511 https://doi.org/10.1146/annurev-astro-082708-101811
  6. Krolik, J. H. & Piran, T., 2011, Swift J1644+57: A White Dwarf Tidally Disrupted by a 104 M Black Hole?, APJ, 743, 134 https://doi.org/10.1088/0004-637X/743/2/134
  7. Kroupa, P., 2001, On the Variation of the Initial Mass Function, MNRAS, 322, 231 https://doi.org/10.1046/j.1365-8711.2001.04022.x
  8. Levan, A. J., Tanvir, N. R., & Cenko, S. B., et al., 2011, An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy, Science, 333, 199 https://doi.org/10.1126/science.1207143
  9. Maraston, C., 2005, Evolutionary Population Synthesis:Models, Analysis of the Ingredients and Application to High-z Galaxies, MNRAS, 362, 799 https://doi.org/10.1111/j.1365-2966.2005.09270.x
  10. Miller, J. M. & Gultekin, K., 2011, X-Ray and Radio Constraints on the Mass of the Black Hole in Swift J164449.3+573451, APJ, 738, L13 https://doi.org/10.1088/2041-8205/738/1/L13
  11. Noll, S., Burgarella, D., & Giovannoli, E., et al., 2009, Analysis of Galaxy Spectral Energy Distributions from far-UV to Far-IR with CIGALE: Studying a SINGS Test Sample, A&A, 507, 1793 https://doi.org/10.1051/0004-6361/200912497
  12. Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W., 2010, Detailed Decomposition of Galaxy Images. II. Beyond Axisymmetric Models, AJ, 139, 2097 https://doi.org/10.1088/0004-6256/139/6/2097
  13. Rees, M. J., 1988, Tidal Disruption of Stars by Black Holes of 10 to the 6th-10 to the 8th Solar Masses in Nearby Galaxies, Nature, 333, 523 https://doi.org/10.1038/333523a0
  14. Sani, E., Marconi, A., Hunt, L. K., & Risaliti, G., 2011, The Spitzer/IRAC View of Black Hole-bulge Scaling Relations, MNRAS, 413, 1479 https://doi.org/10.1111/j.1365-2966.2011.18229.x