DOI QR코드

DOI QR Code

SUPER-MASSIVE BLACK HOLE MASS SCALING RELATIONS

  • GRAHAM, ALISTER W. (Centre for Astrophysics and Supercomputing, Swinburne University of Technology) ;
  • SCOTT, NICHOLAS (Centre for Astrophysics and Supercomputing, Swinburne University of Technology) ;
  • SCHOMBERT, JAMES M. (Department of Physics, University of Oregon)
  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

Using black hole masses which span $10^5-10^{10}M_{\odot}$, the distribution of galaxies in the (host spheroid stellar mass)-(black hole mass) diagram is shown to be strongly bent. While the core-$S{\acute{e}}rsic$ galaxies follow a near-linear relation, having a mean $M_{bh}/M_{sph}$ mass ratio of ~0.5%, the $S{\acute{e}}rsic$ galaxies follow a near-quadratic relation. This is not due to offset pseudobulges, but is instead an expected result arising from the long-known bend in the $M_{sph}{-{\sigma}}$ relation and a log-linear $M_{bh}{-{\sigma}}$ relation.

Keywords

References

  1. Brown, J. S., Valluri, M., Shen, J., & Debattista, V. P., 2013, On the Offset of Barred Galaxies from the Black Hole MBH- Relationship, ApJ, 778, 151 https://doi.org/10.1088/0004-637X/778/2/151
  2. Caon, N., Capaccioli, M., & D'Onofrio, M., 1993, On the Shape of the Light Profiles of Early Type Galaxies, MNRAS, 265, 1013 https://doi.org/10.1093/mnras/265.4.1013
  3. Cappellari, M., Bacon, R., & Bureau, M., et al., 2006, The SAURON project - IV. The Mass-to-light Ratio, the Virial Mass Estimator and the Fundamental Plane of Elliptical and Lenticular Galaxies, MNRAS, 366, 1126 https://doi.org/10.1111/j.1365-2966.2005.09981.x
  4. Cappellari, M., Emsellem, E., & Krajnovic, D., et al., 2011, The ATLAS3D Project - VII. A New Look at the Mor-phology of Nearby Galaxies: the Kinematic Morphology-density Relation, MNRAS, 416, 1680 https://doi.org/10.1111/j.1365-2966.2011.18600.x
  5. Cappellari, M., Scott, N., & Alatalo, K., et al., 2013a, The ATLAS3D Project - XV. Benchmark for Early-type Galaxies Scaling Relations from 260 Dynamical Models:Mass-to-light Ratio, Dark Matter, Fundamental Plane and Mass Plane, MNRAS, 432, 1709 https://doi.org/10.1093/mnras/stt562
  6. Cappellari, M., McDermid, R. M., & Alatalo, K., et al., 2013b, The ATLAS3D Project - XX. Mass-size and Mass-Distributions of Early-type Galaxies: Bulge Fraction Drives Kinematics, Mass-to-light Ratio, Molecular Gas Fraction and Stellar Initial Mass Function, MNRAS, 432, 1862 https://doi.org/10.1093/mnras/stt644
  7. Davies, R. L., Efstathiou, G., Fall, S. M., Illingworth, G., & Schechter, P. L., 1983, The Kinematic Properties of Faint Elliptical Galaxies, ApJ, 266, 41 https://doi.org/10.1086/160757
  8. Debattista, V. P., Kazantzidis, S., & van den Bosch, F. C., 2013, ApJ, Disk Assembly and the M BH- e Relation of Supermassive Black Holes, 765, 23 https://doi.org/10.1088/0004-637X/765/1/23
  9. Dullo, B. T. & Graham, A. W., 2012, Sizing up Partially Depleted Galaxy Cores, ApJ, 755, 163 https://doi.org/10.1088/0004-637X/755/2/163
  10. Emsellem, E., Cappellari, M., Krajnovic, D., et al., 2011, The ATLAS3D project - III. A Census of the Stellar Angular Momentum Within the Effective Radius of Early-type Galaxies: Unveiling the Distribution of Fast and Slow Rotators, MNRAS, 414, 888 https://doi.org/10.1111/j.1365-2966.2011.18496.x
  11. Evstigneeva, E. A., Gregg, M. D., Drinkwater, M. J., & Hilker, M., Internal Properties of Ultracompact Dwarf Galaxies in the Virgo Cluster, 2007, AJ, 133, 1722 https://doi.org/10.1086/511958
  12. Faber, S. M. & Jackson, R. E., 1976, Velocity Dispersions and Mass-to-light Ratios for Rlliptical Galaxies, ApJ, 204, 668 https://doi.org/10.1086/154215
  13. Ferrarese, L. & Merritt, D., 2000, A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies, ApJ, 539, L9 https://doi.org/10.1086/312838
  14. Forbes, D. A., Lasky, P., Graham, A. W., & Spitler, L., 2008, Uniting Old Stellar Systems: From Globular Clusters to Giant Ellipticals, MNRAS, 389, 1924 https://doi.org/10.1111/j.1365-2966.2008.13739.x
  15. Forbes, D. A., Spitler, L. R., & Graham, A. W., et al., 2011, Bridging the Gap Between Low- and High-mass Dwarf Galaxies, MNRAS, 413, 2665 https://doi.org/10.1111/j.1365-2966.2011.18335.x
  16. Gebhardt, K., Bender, R., & Bower, G., et al., 2000, A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion, ApJ, 539, L13 https://doi.org/10.1086/312840
  17. Graham, A. W., 2008, Fundamental Planes and the Barless Mbh- Relation for Supermassive Black Holes, ApJ, 680, 143 https://doi.org/10.1086/587473
  18. Graham, A. W., 2012, Breaking the Law: The M bh-M spheroid Relations for Core-Srsic and Srsic Galaxies, ApJ, 746, 113 https://doi.org/10.1088/0004-637X/746/1/113
  19. Graham, A.W., 2013, Elliptical and Disk Galaxy Structure and Modern Scaling Laws, Planets, Stars and Stellar Systems, 6, 91 (arXiv:1108.0997)
  20. Graham, A. W., 2014, in Structure and Dynamics of Disk Galaxies, Edited by M.S. Seigar and P. Treuthardt. ASP Conference Series, 480, 185
  21. Graham, A. W., Colless, M. M., Busarello, G., Zaggia, S., & Longo, G., 1998, Extended Stellar Kinematics of Elliptical Galaxies in the Fornax Cluster, A&AS, 133, 325 https://doi.org/10.1051/aas:1998325
  22. Graham, A. W., Onken, C. A., Athanassoula, E., & Combes, F., 2011, An Expanded Mbh- Diagram, and a New Calibration of Active Galactic Nuclei Masses, MNRAS, 412, 2211 https://doi.org/10.1111/j.1365-2966.2010.18045.x
  23. Graham, A. W., & Scott, N., 2013, The M BH-L spheroid Relation at High and Low Masses, the Quadratic Growth of Black Holes, and Intermediate-mass Black Hole Candidates, ApJ, 764, 151 https://doi.org/10.1088/0004-637X/764/2/151
  24. Graham, A. W. & Scott, N., 2014, ApJ, in press
  25. Han, D. H., & Park, M. -G., 2015, these proceedings (B2A-5-4)
  26. Hartmann, M., Debattista, V. P., & Cole, D. R., et al., 2013, MNRAS, 441, 1243
  27. Hobbs, G., 2015, these proceedings (B4A-6-4)
  28. Hu, J., 2008, The Black Hole Mass-stellar Velocity Dispersion Correlation: Bulges Versus Pseudo-bulges, MNRAS, 386, 2242 https://doi.org/10.1111/j.1365-2966.2008.13195.x
  29. Hubble, E., Extragalactic Nebulae, 1926, ApJ, 64, 321 https://doi.org/10.1086/143018
  30. Hubble, E. P., 1936, Realm of the Nebulae, by E.P., Hubble, New Haven, Yale University Press
  31. Janz, J. & Lisker, T., 2008, The Sizes of Early-Type Galaxies, ApJ, 689, L25 https://doi.org/10.1086/595720
  32. Jarrett, T. H., Chester, T., & Cutri, R., et al., 2000, 2MASS Extended Source Catalog: Overview and Algorithms, AJ, 119, 2498 https://doi.org/10.1086/301330
  33. Jeans, J., 1919, Problems of Cosmogony and Stellar Dynamics, Cambridge: Cambridge Univ. Press
  34. Jeans, J. H., 1928, Astronomy &Cosmogony, Cambridge:Cambridge University Press, 332
  35. Jerjen, H. & Binggeli, B., 1997, The Nature of Elliptical Galaxies; 2nd Stromlo Symposium, 116, 239
  36. Jiang, Y. -F., Greene, J. E., & Ho, L. C., 2011a, Black Hole Mass and Bulge Luminosity for Low-mass Black Holes, ApJ, 737, L45 https://doi.org/10.1088/2041-8205/737/2/L45
  37. Jiang, Y. -F., Greene, J. E., Ho, L. C., Xiao, T., & Barth, A. J., 2011b, The Host Galaxies of Low-mass Black Holes, ApJ, 742, 68 https://doi.org/10.1088/0004-637X/742/2/68
  38. Kang, G., Hansen, J., Diener, P., Kim, H. -I., Loeffer, F., 2015, these proceedings (B2A-5-2)
  39. Kim, C., 2015, these proceedings (B2C-5-2)
  40. Kourkchi, E., Khosroshahi, H. G., & Carter, D., et al., 2012, Dwarf Galaxies in the Coma Cluster - I. Velocity Dispersion Measurements, MNRAS, 420, 2819 https://doi.org/10.1111/j.1365-2966.2011.19899.x
  41. Laor, A., 1998, On Quasar Masses and Quasar Host Galaxies, ApJ, 505, L83 https://doi.org/10.1086/311619
  42. Laor, A., 2001, On the Linearity of the Black Hole-Bulge Mass Relation in Active and in Nearby Galaxies, ApJ, 553, 677 https://doi.org/10.1086/320989
  43. Laurikainen, E., Salo, H., Buta, R., Knapen, J. H., & Comeron, S., 2010, Photometric Scaling Relations of Lenticular and Spiral Galaxies, MNRAS, 405, 1089
  44. Laurikainen, E., Salo, H., Buta, R., & Knapen, J. H., 2011, Near-infrared Atlas of S0-Sa Galaxies (NIRS0S), MNRAS, 418, 1452 https://doi.org/10.1111/j.1365-2966.2011.19283.x
  45. Lee, H. -M, & Hong, J., 2015, these proceedings (B3B-5-4)
  46. Liu, F. S., Xia, X. Y., Mao, S., Wu, H., & Deng, Z. G., 2008, Photometric Properties and Scaling Relations of Early-type Brightest Cluster Galaxies, MNRAS, 385, 23 https://doi.org/10.1111/j.1365-2966.2007.12818.x
  47. Malumuth, E. M. & Kirshner. R. P., 1981, Dynamics of Lu-minous Galaxies, ApJ, 251, 508 https://doi.org/10.1086/159490
  48. Mapelli, M., Ripamonti, E., Vecchio, A., Graham, A. W., & Gualandris, A., 2012, A Cosmological View of Extreme Mass-ratio Inspirals in Nuclear Star Clusters, A&A, 542, A102 https://doi.org/10.1051/0004-6361/201118444
  49. Matkovic, A. & Guzman, R., 2005, Kinematic Properties and Stellar Populations of Faint Early-type Galaxies - I. Velocity Dispersion Measurements of Central Coma Galaxies, MNRAS, 362, 289 https://doi.org/10.1111/j.1365-2966.2005.09298.x
  50. McConnell, N. J, & Ma, C.-P., 2013, Revisiting the Scaling Relations of Black Hole Masses and Host Galaxy Properties, ApJ, 764, 184 https://doi.org/10.1088/0004-637X/764/2/184
  51. Minkowski R., 1962, Internal Dispersion of Velocities in Other Galaxies, IAUS, 15, 112
  52. Morgan, W. W. & Osterbrock, D. E., 1969, On the Classification of the Forms and the Stellar Content of Galaxies, AJ, 74, 515 https://doi.org/10.1086/110828
  53. Qiao, E. & Liu, B. F., 2015, these proceedings (B2A-5-3)
  54. Savorgnan, G. A. D . & Graham, A. W., 2014, MNRAS, in press
  55. Schechter, P. L., 1980, Mass-to-light Ratios for Elliptical Galaxies, AJ, 85, 801 https://doi.org/10.1086/112742
  56. Schombert, J. M., 1986, The Structure of Brightest Cluster Members. I - Surface Photometry, ApJS, 60, 603 https://doi.org/10.1086/191100
  57. Schombert, J. & Smith, A. K., 2012, The Structure of Galaxies I: Surface Photometry Techniques, PASA, 29, 174 https://doi.org/10.1071/AS11059
  58. Scott, N., Davies, R. L., & Houghton, R. C. W., et al., 2014, Distribution of Slow and Fast Rotators in the Fornax Cluster, MNRAS, 441, 274 https://doi.org/10.1093/mnras/stu472
  59. Scott, N., Graham, A. W., & Schombert, J., 2013, The Supermassive Black Hole Mass-Spheroid Stellar Mass Relation for Srsic and Core-Srsic Galaxies, ApJ, 768, 76 https://doi.org/10.1088/0004-637X/768/1/76
  60. Sersic, J. -L., 1963, Influence of the Atmospheric and Instrumental Dispersion on the Brightness Distribution in a Galaxy, BAAA, 6, 41
  61. Taam, R. E., Liu, B. F., Qiao, E., & Yuan, W., 2015, these proceedings (B5A-4-3)
  62. Toloba, E., Guhathakurta, P., & Peletier, R., et al., 2014, Stellar Kinematics and Structural Properties of Virgo Cluster Dwarf Early-type Galaxies from the SMAKCED Project. II. The Survey and a Systematic Analysis of Kinematic Anomalies and Asymmetries, ApJS, 215, 17 https://doi.org/10.1088/0067-0049/215/2/17
  63. Tonry, J., 1981, Velocity dispersions of low luminosity ellipticals - L approximately equal to sigma-cubed, ApJ, 251, L1 https://doi.org/10.1086/183681
  64. van den Bergh, S., 1976, ApJ, 206, 883 https://doi.org/10.1086/154452
  65. von der Linden, A., Best, P. N., Kauffmann, G., & White, S. D. M., 2007, How special are brightest group and cluster galaxies?, MNRAS, 379, 867 https://doi.org/10.1111/j.1365-2966.2007.11940.x
  66. Wandel, A., 1999, The Black Hole-to-Bulge Mass Relation in Active Galactic Nuclei, ApJ, 519, L39 https://doi.org/10.1086/312106
  67. Woo, J. -H., 2015, these proceedings (B2B-4-2)
  68. Yang, Q. -X., Yuan, F., & Xie, F. -G., 2015, these proceedings (B2A-5-5)
  69. Young, C. K. & Currie, M. J., 1994, A New Extragalactic Distance Indicator Based on the Surface Brightness Profiles of Dwarf Elliptical Galaxies, MNRAS, 268, L11 https://doi.org/10.1093/mnras/268.1.L11

Cited by

  1. Vector theory of gravity: Universe without black holes and solution of dark energy problem vol.92, pp.12, 2017, https://doi.org/10.1088/1402-4896/aa93a8
  2. Improved Dynamical Constraints on the Masses of the Central Black Holes in Nearby Low-mass Early-type Galactic Nuclei and the First Black Hole Determination for NGC 205 vol.872, pp.1, 2019, https://doi.org/10.3847/1538-4357/aafe7a