DOI QR코드

DOI QR Code

SIMULATED IMPACTS TO NON-MAGNETIC CATACLYSMIC VARIABLE DISKS

  • MONTGOMERY, M.M. (University of Central Florida, Physics Department) ;
  • HOWELL, N. (University of Central Florida, Physics Department) ;
  • SCHWARZ, C. (University of Central Florida, Physics Department)
  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

Dust has recently been found to be prevalent in compact binaries such as non-magnetic Cataclysmic Variable systems. As a possible source of this dust is from solid bodies, we explore impacts to non-magnetic Cataclysmic Variable disks. We use three-dimensional Smoothed Particle Hydrodynamic simulations to search for impact signatures. From injections of whole bodies to these disks, we find pulse shapes in simulated bolometric light curves that resemble impact flashes in the light curves of the Shoemaker-Levy 9 event. As a result, we tentatively identify these light curve shapes as signatures of impacts.

Keywords

References

  1. Bisikalo, D. V., Boyarchuk, A. A., & Chechetkin, V. M., et al., 1998, Three-dimensional Numerical Simulations of Gaseous Flow Structure in Semidetatched Binaries, MNRAS, 300, 39 https://doi.org/10.1046/j.1365-8711.1998.01815.x
  2. Bisikalo, D. V. & Kononov, D. A., 2010, Mass Exchange in Close Binaries: Theories VS Observations, MmSAI, 81, 187
  3. Brinkworth, C. S., Hoard, D. W., & Howell, S. B., et al., 2007, Spitzer Space Telescope Observations of Magnetic Cataclysmic Variables: Possibilities for the Presence of Dust in Polars, ApJ, 659, 1541 https://doi.org/10.1086/512797
  4. Ciardi, D. R., Wachter, S., & Hoard, D. W., et al., 2006, Spitzer Space Telescope Observations of Var Her 04: Possible Detection of Dust Formation in a Superoutbursting Tremendous Outburst Amplitude Dwarf Nova, AJ, 132, 1989 https://doi.org/10.1086/508212
  5. Debes, J. H., Hoard, D. W., & Wachter, S., et al., 2011, The WIRED Survey. II. Infrared Excesses in the SDSS DR7 White Dwarf Catalog, ApJS, 197, 38 https://doi.org/10.1088/0067-0049/197/2/38
  6. Farihi, J., 2011, In White Dwarf Atmospehres and Circum-stellar Environments, ed. D.W. Hoard (Wiley: Berlin), 117-171
  7. Gaudenzi, S., Giovannelli, F., & Mandalari, M., et al., 2011, An Intrinsic Source of Reddening in the Cataclysmic Variable SS Cygni, A&A, 525, 147 https://doi.org/10.1051/0004-6361/200811428
  8. Harrington, J., de Pater, I., & Brecht, S. H., et al., 2004, Lessons from Shoemker-Levy 9 about Jupiter and Planetary Impacts, in: Jupiter. The Planet, Satellites and Magnetosphere. Edited by Fran Bagenal, Timothy E. Dowling, William B. McKinnon. Cambridge Planetary Science, Vol. 1, Cambridge, UK: Cambridge University Press, p. 159-184
  9. Hoard, D. W., 2012, Dust in White Dwarfs and Cataclysmic Variables (An Observational Perspective), MmSAI, 83, 490
  10. Hoard, D. W., Howell, S. B., & Brinkworth, C. S., et al., 2007, The Mid-Infrared Spectrum of hte Short Orbital Period Polar EF Eridani from the Spitzer Space Telescope, ApJ, 671, 734 https://doi.org/10.1086/522694
  11. Hoard, D. W., Kafka, S., Wachter, S., et al., 2009, Observations of V592 Cassiopeiae with the Spitzer Space Telescope - Dust in the Mid-Infrared, ApJ, 693, 236 https://doi.org/10.1088/0004-637X/693/1/236
  12. Howell, S. B., Brinkworth, C, & Hoard, D. W., et al., 2006, Spitzer Space Telescope Observations of Magnetic Cata-clysmic Variables: Evidence of Excess Emission at $3-8{\mu}m$, ApJ, 646, L65 https://doi.org/10.1086/506558
  13. Howell, S. B., Hoard, D. W., & Brinkworth, C., et al., 2008, 'Dark Matter' in Accretion Disks, ApJ, 685, 418 https://doi.org/10.1086/590491
  14. Jura, M., Farihi, J., & Zuckerman, B., et al., 2007, Infrared Emission from the Dusty Disk Orbiting GD 362, an Externally Polluted White Dwarf, AJ, 133, 1927 https://doi.org/10.1086/512734
  15. Koester, D., Provencal, J., & Shipman, H. L., 1997, Metals in the Variable DA G29-38, A&A, 320, L57
  16. Kuchner, M. J., Koresko, C. D. & Brown, M. E. 1998, Keck Speckle Imaging of the White Dwarf G29-38: No Brown Dwarf Companion Detected, ApJ, 508, L81 https://doi.org/10.1086/311725
  17. Montgomery, M. M., 2009, Atlas of Tilted Accretion Disks and Source to Negative Superhumps, MNRAS, 394, 1897 https://doi.org/10.1111/j.1365-2966.2009.14487.x
  18. Montgomery, M. M., 2012, Numerical Simulations of Naturally Titled, Retrogradely Precessing, Nodal Superhumping Accretion Disks, ApJ, 745, L25 https://doi.org/10.1088/2041-8205/745/2/L25
  19. Reach, W. T., Kuchner, M. J., & von Hippel, T., et al., 2005, The Dust Cloud Around the White Dwarf G29-38, ApJ, 635, L161 https://doi.org/10.1086/499561
  20. Sasaki, S., Yabe, T., & Abe, Y., et al., 1995, Explanation of IR-Light Curves of Shoemaker-Levy 9 Impacts: Comparison Between Numerical Simulations and Observations, ESOC, 52, 293
  21. Shakura, S. & Sunyaev, R. A., 1973, Black Holes in Binary Systems. Observational appearance, A&A, 149, 135
  22. Simpson, J. C., 1995, Numerical Simulations for Three-Dimensional Smoothed Particle Hydrodynamic Simulations: Applications to Accretion Disks, ApJ, 448, 822 https://doi.org/10.1086/176010
  23. Zuckerman, B. & Becklin, E. E., 1987, Excess Infrared Radiation from a White Dwarf - an Orbiting Brown Dwarf?, Nature, 330, 138 https://doi.org/10.1038/330138a0
  24. Zuckerman, B., Koester, D., & Dufour, P., et al., 2011, An Aluminum/Calcium-rich,Iron-poor, White Dwarf Star:Evidence for an Extrasolar Planetary Lithosphere? ApJ, 739, 101 https://doi.org/10.1088/0004-637X/739/2/101
  25. Zuckerman, B., Koester, D., & Melis, C., et al., 2007, The Chemical Compositon of an Extrasolar Minor Planet, ApJ, 671, 872 https://doi.org/10.1086/522223