DOI QR코드

DOI QR Code

LPS Up-Regulates ICAM-1 Expression in Breast Cancer Cells by Stimulating a MyD88-BLT2-ERK-Linked Cascade, Which Promotes Adhesion to Monocytes

  • Park, Geun-Soo (School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Jae-Hong (School of Life Sciences and Biotechnology, Korea University)
  • Received : 2015.06.16
  • Accepted : 2015.07.17
  • Published : 2015.09.30

Abstract

Monocytes are the major inflammatory cells that infiltrate most solid tumors in humans. The interaction of tumor cells with infiltrating monocytes and their adhesion to these monocytes play a significant role in altering the tumor to become more aggressive. Recently, exposure to lipopolysaccharide (LPS) was suggested to promote cancer cell adhesion to monocytes; however, little is known about the details of the signaling mechanism involved in this process. In this study, we found that LPS up-regulates ICAM-1 expression in MDA-MB-231 breast cancer cells, which facilitates their adhesion to THP-1 monocytes. In addition, we analyzed the signaling mechanism underlying the up-regulation of ICAM-1 and found that the siRNA-mediated depletion of BLT2 markedly suppressed the LPS-induced expression of ICAM-1 in MDA-MB-231 cells and the subsequent adhesion of these cells to THP-1 monocytes. Moreover, we demonstrated that myeloid differentiation primary response gene 88 (MyD88) lies downstream of LPS/TLR4 and upstream of BLT2 and that this 'MyD88-BLT2' cascade mediates ERK activation and subsequent ICAM-1 expression, which is critical for the adhesion of MDA-MB-231 cells to THP-1 monocytes. Taken together, our results demonstrate for the first time that LPS up-regulates ICAM-1 expression in breast cancer cells via a MyD88-BLT2-ERK-linked signaling cascade, leading to the increased adhesion of breast cancer cells to monocytes.

Keywords

References

  1. Blot, E., Chen, W., Vasse, M., Paysant, J., Denoyelle, C., Pille, J.Y., Vincent, L., Vannier, J.P., Soria, J., and Soria, C. (2003). Cooperation between monocytes and breast cancer cells promotes factors involved in cancer aggressiveness. Br J. Cancer 88, 1207-1212. https://doi.org/10.1038/sj.bjc.6600872
  2. Cargnello, M., and Roux, P.P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75, 50-83. https://doi.org/10.1128/MMBR.00031-10
  3. Chaves, M.M., Marques-da-Silva, C., Monteiro, A.P., Canetti, C., and Coutinho-Silva, R. (2014). Leukotriene B4 modulates P2X7 receptor-mediated Leishmania amazonensis elimination in murine macrophages. J. Immunol. 192, 4765-4773. https://doi.org/10.4049/jimmunol.1301058
  4. Chen, C., and Khismatullin, D.B. (2014). Lipopolysaccharide induces the interactions of breast cancer and endothelial cells via activated monocytes. Cancer Lett. 345, 75-84. https://doi.org/10.1016/j.canlet.2013.11.022
  5. Chittezhath, M., Dhillon, M.K., Lim, J.Y., Laoui, D., Shalova, I.N., Teo, Y.L., Chen, J., Kamaraj, R., Raman, L., Lum, J., et al. (2014). Molecular profiling reveals a tumor-promoting phenotype of monocytes and macrophages in human cancer progression. Immunity 41, 815-829. https://doi.org/10.1016/j.immuni.2014.09.014
  6. Coste, I., Le Corf, K., Kfoury, A., Hmitou, I., Druillennec, S., Hainaut, P., Eychene, A., Lebecque, S., and Renno, T. (2010). Dual function of MyD88 in RAS signaling and inflammation, leading to mouse and human cell transformation. J. Clin. Invest. 120, 3663-3667. https://doi.org/10.1172/JCI42771
  7. Evani, S.J., Prabhu, R.G., Gnanaruban, V., Finol, E.A., and Ramasubramanian, A.K. (2013). Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. FASEB J. 27, 3017-3029. https://doi.org/10.1096/fj.12-224824
  8. Funk, C.D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871-1875. https://doi.org/10.1126/science.294.5548.1871
  9. Huang, W.C., Chan, S.T., Yang, T.L., Tzeng, C.C., and Chen, C.C. (2004). Inhibition of ICAM-1 gene expression, monocyte adhesion and cancer cell invasion by targeting IKK complex: molecular and functional study of novel alpha-methylenegamma-butyrolactone derivatives. Carcinogenesis 25, 1925-1934. https://doi.org/10.1093/carcin/bgh211
  10. Hubbard, A.K., and Rothlein, R. (2000). Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic. Biol. Med. 28, 1379-1386. https://doi.org/10.1016/S0891-5849(00)00223-9
  11. Kim, J.Y., Lee, W.K., Yu, Y.G., and Kim, J.H. (2010). Blockade of LTB4-induced chemotaxis by bioactive molecules interfering with the BLT2-Galphai interaction. Biochem. Pharmacol. 79, 1506-1515. https://doi.org/10.1016/j.bcp.2010.01.018
  12. Kim, H., Choi, J.A., Park, G.S., and Kim, J.H. (2012). BLT2 upregulates interleukin-8 production and promotes the invasiveness of breast cancer cells. PLoS One 7, e49186. https://doi.org/10.1371/journal.pone.0049186
  13. Kim, H., Park, G.S., Lee, J.E., and Kim, J.H. (2013a). A leukotriene B4 receptor-2 is associated with paclitaxel resistance in MCF-7/DOX breast cancer cells. Br J. Cancer 109, 351-359. https://doi.org/10.1038/bjc.2013.333
  14. Kim, J.Y., Kim, H., Jung, B.J., Kim, N.R., Park, J.E., and Chung, D.K. (2013b). Lipoteichoic acid isolated from Lactobacillus plantarum suppresses LPS-mediated atherosclerotic plaque inflammation. Mol. Cells 35, 115-124. https://doi.org/10.1007/s10059-013-2190-3
  15. Kim, H., Choi, J.A., and Kim, J.H. (2014). Ras promotes transforming growth factor-beta (TGF-beta)-induced epithelialmesenchymal transition via a leukotriene B4 receptor-2-linked cascade in mammary epithelial cells. J. Biol. Chem. 289, 22151-22160. https://doi.org/10.1074/jbc.M114.556126
  16. Lee, S.J., Choi, E.K., Seo, K.W., Bae, J.U., Kim, Y.H., Park, S.Y., Oh, S.O., and Kim, C.D. (2013). 5-Lipoxygenase plays a pivotal role in endothelial adhesion of monocytes via an increased expression of Mac-1. Cardiovasc. Res. 99, 724-733. https://doi.org/10.1093/cvr/cvt135
  17. Lin, F.S., Lin, C.C., Chien, C.S., Luo, S.F., and Yang, C.M. (2005). Involvement of p42/p44 MAPK, JNK, and NF-kappaB in IL-1beta-induced ICAM-1 expression in human pulmonary epithelial cells. J. Cell Physiol. 202, 464-473. https://doi.org/10.1002/jcp.20142
  18. Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancerrelated inflammation. Nature 454, 436-444. https://doi.org/10.1038/nature07205
  19. Park, G.S., and Kim, J.H. (2015). Myeloid differentiation primary response gene 88-leukotriene B4 receptor 2 cascade mediates lipopolysaccharide-potentiated invasiveness of breast cancer cells. Oncotarget 6, 5749-5759. https://doi.org/10.18632/oncotarget.3304
  20. Powell, W.S., Gravel, S., Khanapure, S.P., and Rokach, J. (1999). Biological inactivation of 5-oxo-6,8,11,14-eicosatetraenoic acid by human platelets. Blood 93, 1086-1096.
  21. Rakoff-Nahoum, S., and Medzhitov, R. (2009). Toll-like receptors and cancer. Nat. Rev. Cancer 9, 57-63. https://doi.org/10.1038/nrc2541
  22. Rosette, C., Roth, R.B., Oeth, P., Braun, A., Kammerer, S., Ekblom, J., and Denissenko, M.F. (2005). Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis 26, 943-950. https://doi.org/10.1093/carcin/bgi070
  23. Rui, W., Guan, L., Zhang, F., Zhang, W., and Ding, W. (2015). PM 2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NFkappaB-dependent pathway. J. Appl. Toxicol. doi: 10.1002/jat.3143. [Epub ahead of print]
  24. Schroder, C., Witzel, I., Muller, V., Krenkel, S., Wirtz, R.M., Janicke, F., Schumacher, U., and Milde-Langosch, K. (2011). Prognostic value of intercellular adhesion molecule (ICAM)-1 expression in breast cancer. J. Cancer Res. Clin. Oncol. 137, 1193-1201. https://doi.org/10.1007/s00432-011-0984-2
  25. Seo, J.M., Cho, K.J., Kim, E.Y., Choi, M.H., Chung, B.C., and Kim, J.H. (2011). Up-regulation of BLT2 is critical for the survival of bladder cancer cells. Exp. Mol. Med. 43, 129-137. https://doi.org/10.3858/emm.2011.43.3.014
  26. Seo, J.M., Park, S., and Kim, J.H. (2012). Leukotriene B4 receptor-2 promotes invasiveness and metastasis of ovarian cancer cells through signal transducer and activator of transcription 3 (STAT3)-dependent up-regulation of matrix metalloproteinase 2. J. Biol. Chem. 287, 13840-13849. https://doi.org/10.1074/jbc.M111.317131
  27. Silverman, M.D., Zamora, D.O., Pan, Y., Texeira, P.V., Planck, S.R., and Rosenbaum, J.T. (2001). Cell adhesion molecule expression in cultured human iris endothelial cells. Invest Ophthalmol. Vis. Sci. 42, 2861-2866.
  28. Usami, Y., Ishida, K., Sato, S., Kishino, M., Kiryu, M., Ogawa, Y., Okura, M., Fukuda, Y., and Toyosawa, S. (2013). Intercellular adhesion molecule-1 (ICAM-1) expression correlates with oral cancer progression and induces macrophage/cancer cell adhesion. Int. J. Cancer 133, 568-578. https://doi.org/10.1002/ijc.28066
  29. van de Stolpe, A., and van der Saag, P.T. (1996). Intercellular adhesion molecule-1. J. Mol. Med. 74, 13-33. https://doi.org/10.1007/BF00202069
  30. Watanabe, N., Shikata, K., Shikata, Y., Sarai, K., Omori, K., Kodera, R., Sato, C., Wada, J., and Makino, H. (2011). Involvement of MAPKs in ICAM-1 expression in glomerular endothelial cells in diabetic nephropathy. Acta Med. Okayama 65, 247-257.
  31. Zhu, X.W., and Gong, J.P. (2013). Expression and role of icam-1 in the occurrence and development of hepatocellular carcinoma. Asian Pac. J. Cancer Prev. 14, 1579-1583. https://doi.org/10.7314/APJCP.2013.14.3.1579

Cited by

  1. Anti-inflammatory action of ethanolic extract of Ramulus mori on the BLT2-linked cascade vol.49, pp.4, 2016, https://doi.org/10.5483/BMBRep.2016.49.4.002
  2. Leukotriene B4 receptor-2 contributes to chemoresistance of SK-OV-3 ovarian cancer cells through activation of signal transducer and activator of transcription-3-linked cascade vol.1863, pp.2, 2016, https://doi.org/10.1016/j.bbamcr.2015.11.011
  3. 5-/12-Lipoxygenase-linked cascade contributes to the IL-33-induced synthesis of IL-13 in mast cells, thus promoting asthma development 2017, https://doi.org/10.1111/all.13294
  4. BLT2, a leukotriene B4 receptor 2, as a novel prognostic biomarker of triple-negative breast cancer vol.51, pp.8, 2018, https://doi.org/10.5483/BMBRep.2018.51.8.127
  5. Macromolecular crowding tunes 3D collagen architecture and cell morphogenesis vol.7, pp.2, 2019, https://doi.org/10.1039/C8BM01188E
  6. Lipopolysaccharide/TLR4 Stimulates IL-13 Production through a MyD88-BLT2–Linked Cascade in Mast Cells, Potentially Contributing to the Allergic Response vol.199, pp.2, 2015, https://doi.org/10.4049/jimmunol.1602062
  7. Leukotriene B 4 receptor 2 gene polymorphism (rs1950504, Asp196Gly) leads to enhanced cell motility under low-dose ligand stimulation vol.49, pp.11, 2017, https://doi.org/10.1038/emm.2017.192
  8. Interleukin-1β induces intercellular adhesion molecule-1 expression, thus enhancing the adhesion between mesenchymal stem cells and endothelial progenitor cells via the p38 MAPK signaling pathway vol.41, pp.4, 2015, https://doi.org/10.3892/ijmm.2018.3424
  9. Wogonin suppresses the LPS-enhanced invasiveness of MDA-MB-231 breast cancer cells by inhibiting the 5-LO/BLT2 cascade vol.42, pp.4, 2015, https://doi.org/10.3892/ijmm.2018.3776
  10. ADAM17-Mediated Ectodomain Shedding of Toll-Like Receptor 4 as a Negative Feedback Regulation in Lipopolysaccharide-Activated Aortic Endothelial Cells vol.45, pp.5, 2015, https://doi.org/10.1159/000487876
  11. Toll-like receptor 4 and breast cancer: an updated systematic review vol.26, pp.3, 2015, https://doi.org/10.1007/s12282-018-00935-2
  12. Forkhead Box C2 Attenuates Lipopolysaccharide-Induced Cell Adhesion via Suppression of Intercellular Adhesion Molecule-1 Expression in Human Umbilical Vein Endothelial Cells vol.38, pp.6, 2015, https://doi.org/10.1089/dna.2019.4663
  13. Synthetic immunomodulation with a CRISPR super-repressor in vivo vol.22, pp.9, 2015, https://doi.org/10.1038/s41556-020-0563-3
  14. Molecular Characterization and Expression Analysis of Intercellular Adhesion Molecule-1 (ICAM-1) Genes in Rainbow Trout (Oncorhynchus mykiss) in Response to Viral, Bacterial and Parasitic Challenge vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.704224