DOI QR코드

DOI QR Code

The optimum conversion efficiency in nile blue arabinose system by photogalvanic cell

  • Lal, Mohan (Solar Energy Laboratory, Department of Chemistry, Jai Narain Vyas University) ;
  • Gangotri, K.M. (Solar Energy Laboratory, Department of Chemistry, Jai Narain Vyas University)
  • Received : 2015.05.27
  • Accepted : 2015.07.31
  • Published : 2015.09.25

Abstract

The Nile blue has been used as a photosensitizer with Arabinose as a reductant in photogalvanic cell for optimum conversion efficiency and storage capacity. Reduction cost of the photogalvanic cell for commercial utility. The generated photopotential and photocurrent are 816.0 mV and $330.0{\mu}A$ respectively. The maximum power of the cell is $269.30{\mu}W$ where as the observed power at power point is $91.28{\mu}W$. The observed conversion efficiency is 0.6095% and the fill factor 0.2566 has been experimentally found out at the power point of the photogalvanic cell, whereas the absolute value is 1.00. The photogalvanic cell so developed can work for 120.0 minutes in dark if it is irradiated for 200.0 minutes that is the storage capacity of photogalvanic cell is 60.00%. The effects of different parameters on the electrical output of the photogalvanic cell have been observed. A mechanism has also been proposed for the photogeneration of electrical energy.

Keywords

References

  1. Albery, W.J. and Archer, D.M. (1977), "Optimum efficiency of photogalvanic cells for solar energy conversion", Nature, 270, 399-402. https://doi.org/10.1038/270399a0
  2. Amouyal, E. (1995), "Photochemical production of hydrogen and oxygen from water: A review and state of the art", Sol. Energy Mater. Sol. Cell., 38, 249-276. https://doi.org/10.1016/0927-0248(95)00003-8
  3. Balzani, V., Credi, A. and Venturi, M. (2007), "Photochemical conversion of solar energy", J. Chem. Sus. Chem., 1, 26-58.
  4. Becquerel, E. (1839), "On electron effects under the influence of solar radiation", Compet. Rend., 9, 561.
  5. Bolton, J.R. and Hall, D.O. (1979), "Photochemical conversion and storage of solar energy", Ann. Rev. Energy, 4, 353-401. https://doi.org/10.1146/annurev.eg.04.110179.002033
  6. Davis, D.D., King, G.K., Stevenson, K.L., Birnbaum, E.R. and Hageman, J.H. (1977), "Photoredox reactions of metal ions for photochemical solar energy conversion", J. Solid State Chem., 22, 63-70.
  7. Dube, S., Lodha, A., Sharma, S.L. and Ameta, S.C. (1993), "Use of an Azur-A-NTA system in photogalvanic cell for solar energy conversion", Int. J. Energy Res., 17, 359-363. https://doi.org/10.1002/er.4440170504
  8. Eisenberg, M. and Silverman, H.P. (1961), "Photo-electrochemical cell", Electrochimica Acta, 51, 1-12.
  9. Fujishima, A. and Honda, K. (1972), "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238, 37-38. https://doi.org/10.1038/238037a0
  10. Gangotri, K.M. and Lal, C. (2000), "Studies in photogalvanic effect and mixed dyes system: EDTA Methylene blue-Toludiene blue system", Int. J. Energy Res., 24, 365-371. https://doi.org/10.1002/(SICI)1099-114X(20000325)24:4<365::AID-ER593>3.0.CO;2-I
  11. Gangotri, K.M. and Lal, M. (2013), "Study of photogalvanic effect in photogalvanic cell containing mixed surfactant (NaLS+CTAB) methylene blue as a photosensitizer and xylose as a reductant", Res. J. Chem. Sci., 3(3), 20-25.
  12. Gangotri, K.M. and Lal, M. (2014), "Use of Trypan blue- Arabinose system in photogalvanic cell for solar energy conversion and storage", IJESRT, 3(6), 447-454.
  13. Gangotri, K.M. and Meena, R.C. (2001), "Use of reductant and photosensitizer in photogalvanic cells for solar energy conversion and storage: Oxalic acid-methylene blue system", J. Photochem. Photobiol A Chem., 141, 175-177. https://doi.org/10.1016/S1010-6030(01)00416-6
  14. Gangotri, K.M. and Regar, O.P. (1998), "Use of azine dye as a photosensitizer in solar cells: different reductants-safranine system", Int. J. Energy Res., 21, 1345-1350.
  15. Gangotri, P. and Gangotri, K.M. (2009), "Studies of the micellar effect on photogalvanic: solar energy conversion and storage in EDTA-safranine O-Tween-80 system", Energy Fuel., 23, 2367-2372.
  16. Genwa, K.R. and Chouhan, A. (2006), "Role of heterocyclic dye (Azur A) as a photosensitizer in photogalvanic cell for solar energy conversion and storage: NaLS-ascorbic acid system", Solar Energy, 80, 1213-1219. https://doi.org/10.1016/j.solener.2005.06.020
  17. Genwa, K.R. and Genwa, M. (2008), "Photogalvanic cell: A new approach for green and sustainable chemistry", Sol. Energy Mater. Sol. Cell., 9, 2522-529
  18. Genwa, K.R. and Khatri, N.C. (2007), "Role of azine dye as photosensitizer in Photogalvanic cells for solar energy conversion and storage: Brij-35-Safranine-DTPA system", J. Ind. Chem. Soc., 84, 269-272.
  19. Genwa, K.R., Kumar, A. and Sonel, A. (2009), "Photogalvanic solar energy conversion: Study with photosensitizer Toluidine blue and Malachite green in presence of NaLS", Appl. Energy, 86, 1431-1436. https://doi.org/10.1016/j.apenergy.2008.11.026
  20. Groenen, E.J., Groot, De M.S., Ruiter, De R. and Wit, De N. (1984), "Triton X-100 micelles in the ferrous/thionine photogalvanic cell", J. Phys. Chem., 88, 1449-1454. https://doi.org/10.1021/j150651a043
  21. Hagfeldt, A., Didriksson, B., Palmqvist, T., Lindstrom, H., Sodergren, S., Rensmo, H. and Lindquist, S.E. (1994), "Verification of high efficiencies for the Gratzel cell: A 7% efficient solar cell based on dyesensitized colloidal $TiO_2$ films", Sol. Energy Mater. Sol. Cell., 31, 481-486. https://doi.org/10.1016/0927-0248(94)90190-2
  22. Jana, A.K. and Bhowmik, B.B. (1999), "Enhancement in power output of solar cells consisting of mixed dye", J. Photochem. Photobiol A Chem., 122, 53-56. https://doi.org/10.1016/S1010-6030(98)00467-5
  23. Kalyanasundaram, K. and Gratzel, M. (2008), "Photochemical conversion and storage of solar energy", J.Photochem Photobiol A Chem., 40, 807-822.
  24. Khamesra, S., Ameta, R., Bala, M. and Ameta, S.C. (1990), "Use of micelles in photogalvanic cell for solar energy conversion and storage: Azur A-glucose system", Int. J. Energy Res., 14, 163-167. https://doi.org/10.1002/er.4440140205
  25. Lal, C. (2007), "Use of mixed dyes in a photogalvanic cell for solar energy conversion and storage: EDTAthionine-Azure B system", J. Power Sour., 164, 926-930. https://doi.org/10.1016/j.jpowsour.2006.11.020
  26. Lichtin, N.D. (1976), "Photochemical conversion of solar energy", Annual Progress Report, Boston Univ. MA.
  27. Lymperopoulos, K.A., Botsaris, P.N., Angelakoglou, K. and Gaidajis, G. (2015), "Sustainable energy action plans of medium-sized municipalities in north Greece", Adv. Energy Res., 3(1), 11-30. https://doi.org/10.12989/eri.2015.3.1.011
  28. Mahmoud, S.A. and Mohamed, B.S. (2015), "Study on the performance of photogalvanic cell for solar energy conversion and storage", Int. J. Electrochem. Sci., 10, 3340-3353.
  29. Meena, J. and Gangotri, K.M. (2015), "EDTA-TB-Cetyl Pyridinium chloride in photogalvanic cell for solar energy conversion and storage", IJICSE, 2(1), 21-25.
  30. Meena, S.B., Saini, S.R. and Meena, R.C. (2015), "Role of photosensitizer (Orange -G) in photogalvanic cell for generation of solar energy", IJESRT, 4(2), 135-141.
  31. Memming, R. (1980), "Solar energy conversion by photoelectrochemical processes", Electrochimica Acta, 25, 77-88. https://doi.org/10.1016/0013-4686(80)80054-5
  32. Murthy, A.S.N. and Reddy, K.S. (1979), "Photochemical energy conversion studies in systems containing methylene blue", Int. J. Energy Res., 3, 205-210. https://doi.org/10.1002/er.4440030302
  33. Pan, R.L., Bhardwaj, R. and Gross, E.L. (1993), "Photochemical energy conversion by a thiazine photosynthetic photoelectro-chemical cell", J. Chem. Tech. Biotech., 33A, 39-48.
  34. Pramila, S. and Gangotri, K.M. (2007), "Use of anionic micelles in photogalvanic cells for solar energy conversion and storage Dioctylsulfosuccinate-mannitol-safranine system", Energy Sour. Part: A, 29, 1253-1257. https://doi.org/10.1080/00908310600625103
  35. Rabinowitch, E. (1940), "The Photogalvanic effect I. The Photochemical Properties of the thionine-iron system", J. Phys. Chem., 8, 551-559. https://doi.org/10.1063/1.1750711
  36. Rabinowitch, E. (1940), "The Photogalvanic effect II. The Photogalvanic Properties of the thionine-iron system", J. Phys. Chem., 8, 560-566. https://doi.org/10.1063/1.1750712
  37. Raj, S., Edwin, A.M., Pragasam, J., Xavier, F.P. and Nagaraja, K.S. (2000), "Photoelectrochemical studies on [$MnMoO_2(NCS)(Ox)_3(H_2O)_2)Ox=8-quinolinol$]: a novel system for solar energy conversion", Int. J. Energy Res., 24, 1351-1358. https://doi.org/10.1002/1099-114X(200012)24:15<1351::AID-ER654>3.0.CO;2-P
  38. Rideal, E.K. and Williams, E.G. (1925), "The action of light on ferrous-ferric-iodide-equilibrium", J. Chem. Soc., 127, 258-269. https://doi.org/10.1039/ct9252700258
  39. Saini, S.R., Bai, S. and Meena, R.C. (2015), "Studies of surfactant and photosensitizer in photogalvanic cell for solar energy conversion and storage: Methyl violet NaLS and EDTA system", IJAERT, 3(1), 11-20.
  40. Sankar, D., Deepa, N., Rajagopal, S. and Karthik, K.M. (2015), "Solar power and desalination plant for copper industry: improvised techniques", Adv. Energy Res., 3(1), 59-70. https://doi.org/10.12989/eri.2015.3.1.059
  41. Suresh, E., Pragasam, J., Xavier, F.P. and Nagaraja, K.S. (1999), "Investigation of manganesemolybdenumdiethyledithiocarbamate complex as a potential system for solar energy conversion", Int. J. Energy Res., 23, 229-233. https://doi.org/10.1002/(SICI)1099-114X(19990310)23:3<229::AID-ER474>3.0.CO;2-M
  42. Tanwar, P. (2015), "The use of surfactant in photogalvanic cells for solar energy conversion and storage: A sodium lauryl sulphate- mannitol- methylene blue system", Energy Sour., 37(12), 1318-1322. https://doi.org/10.1080/15567036.2011.603022
  43. Weijermars, R. (2015), "Sustainable energy system changes", Energy Strat. Rev., 2, 205-208.

Cited by

  1. Photochemical solar power and storage through photogalvanic cells: Comparing performance of dye materials vol.39, pp.6, 2017, https://doi.org/10.1080/15567036.2016.1243171