DOI QR코드

DOI QR Code

Enhancement of Size Gradient of Imprinted Nanopattern by Plasma Etching under a Nonuniform Magnetic Field

  • Lim, Jonghwan (Department of Chemistry, Sungkyunkwan University (SKKU)) ;
  • Kim, Soohyun (Department of Chemistry, Sungkyunkwan University (SKKU)) ;
  • Kim, Da Sol (Department of Chemistry, Sungkyunkwan University (SKKU)) ;
  • Jeong, Mira (Nano Convergence and Manufacturing Systems Research Division, Korea Institute of Machinery & Materials (KIMM)) ;
  • Lee, Jae-Jong (Nano Convergence and Manufacturing Systems Research Division, Korea Institute of Machinery & Materials (KIMM)) ;
  • Yun, Wan Soo (Department of Chemistry, Sungkyunkwan University (SKKU))
  • Received : 2015.09.02
  • Accepted : 2015.09.07
  • Published : 2015.09.30

Abstract

We report a simple way to enhance the size gradient of an imprinted nanopattern through oxygen plasma etching under a nonuniform magnetic field. A sample substrate was placed next to a magnet, and then a nonuniform magnetic field condition was formed around the sample. Using oxygen plasma etching, a line pattern having an initial width of 273 nm was gradually modified from 248 nm at one end to 182 nm at the other end. Controlling the arrangement of the magnet and sample, we could induce a triangular shape size gradient. We verified that the gradually modified nanopatterns we produced are applicable to continual optical property control, showing a possibility to be utilized for optical components such as gratings and polarizers.

Keywords

References

  1. S.-W. Ahn, K.-D. Lee, J.-S Kim, S. H. Kim, J.-D. P, S.-H. Lee, and P.-W. Yoon, Nanotechnology 16, 1874 (2005). https://doi.org/10.1088/0957-4484/16/9/076
  2. C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, Appl. Phys. Lett. 101, 103901 (2012). https://doi.org/10.1063/1.4749810
  3. Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, Nanotechnology 23, 344018 (2012). https://doi.org/10.1088/0957-4484/23/34/344018
  4. J. L. Skinner, L. L. Hunter, A. A. Talin, J. Provine, and D. A. Horsley, IEEE Trans. Nanotechnol. 7, 527 (2008). https://doi.org/10.1109/TNANO.2008.2002648
  5. M.-G. Kang, H. J. Park, S. H. Ahn, L. J. Guo, Sol. Energy Mater. Sol. Cells 94, 1179 (2010). https://doi.org/10.1016/j.solmat.2010.02.039
  6. Z. Chen, B. Cotterell, W. Wang, E. Guenther, S.-J. Chua, Thin Solid Films 394, 202 (2001).
  7. J. O. Ok, M. K. Kwak, C. M. Huard, H. S. Youn, and L. J. Guo, Adv. Mater. 25, 6554 (2013). https://doi.org/10.1002/adma.201303514
  8. M. E. Garah, N. Marets, M. Mauro, A. Aliprandi, S. Bonacchi, L. D. Cola, A. Ciesielski, V. Bulach, M. W. Hosseini, and P. Samori, J. An. Che. Soc., 137, 8450 (2015). https://doi.org/10.1021/jacs.5b02283
  9. M. K. Kwak, J. G. Ok, J. Y. Lee, and L. J. Guo, Nanotechnology 23, 344008 (2012). https://doi.org/10.1088/0957-4484/23/34/344008
  10. W. A. Luhman, and R. J. Holmes, Adv. Funct. Mater. 21, 764 (2011). https://doi.org/10.1002/adfm.201001928
  11. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, Nat. Commun. 59, 1 (2010).
  12. C. Battaglia, J. Escarre, K. Soderstrom, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. D. Wolf, F.-J. Haug, M. Despeisse, and C. Ballif, Nano Lett. 11, 661 (2011). https://doi.org/10.1021/nl1037787
  13. K.-T. Lee, J.-H. Park, S. J. Kwon, H.-K. Kwon, J. Kyhm, K.-W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S.-H. Lee, D.-H. Shin, H. Ko, I.-K. Han, B.-K. Ju, S.-H. Kwon, and D.-H. Ko, Nano Lett. 15, 2491-2497 (2015). https://doi.org/10.1021/nl5049803
  14. D. Kim, S.-B. Jeon, J. Y. Kim, M.-L. Seol, S. O. Kim, Y.-K. Choi, Nano Energy, 12, 331 (2015). https://doi.org/10.1016/j.nanoen.2015.01.008
  15. S.-W. Lee, K.-S. Lee, J. Ahn, J.-J Lee, M.-G. Kim, and Y.-B. Shin, ACS Nano 5, 897 (2011). https://doi.org/10.1021/nn102041m
  16. A. Cattoni, P. Ghenuche, A.-M Haghiri-Gosnet, D. Decanini, J. Chen, J.-L Pelouard, and S. Collin, Nano Lett. 11, 3557 (2011). https://doi.org/10.1021/nl201004c
  17. F. Fernandez, O. G. Lopez, E. Tellechea, A. C. Asensio, J. F. Moran, and I. Cornago, IEEE Trans. Nanotechnol. 13, 308 (2014). https://doi.org/10.1109/TNANO.2014.2300536
  18. J. Lee, S. Cho, J. Lee, H. Ryu, J. Park, S. Lim, b. Oh, C. Lee, W. Huang, A. Busnaina, H. Lee, J. Biotechnol., 168, 584-588 (2013). https://doi.org/10.1016/j.jbiotec.2013.08.029
  19. C.-W. Kuo, J.-Y. Shiu, and P. Chen, Chem. Mater. 15, 2917 (2003). https://doi.org/10.1021/cm0343249
  20. C. Pina-Hernandez, P.-F. Fu, and L. J. Guo, ACS Nano 5, 923 (2011). https://doi.org/10.1021/nn102127z
  21. D. K. Park, A. Kang, M. Jeong, J.-J Lee, and W. S. Yun, Thin Solid Films 567, 54 (2014). https://doi.org/10.1016/j.tsf.2014.07.023
  22. Y. Ding, H. J. Qi, K. J. Alvine, H. W. Ro, D. U. Ahn, S. Lin-Gibson, J. F. Douglas, and C. L. Soles, Macromolecules 43, 8191 (2010). https://doi.org/10.1021/ma1018632
  23. P. Falstad, Electrodynamics Simulation (TM), www.falstad.com/mathphysics.html (27 July 2015).