참고문헌
- Boryan, C., Z. Yang, R. Mueller and M. Craig. 2011. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, cropland data layer program. Geocarto International 26(5):341-358. https://doi.org/10.1080/10106049.2011.562309
- Chang, J., M.C. Hansen, K. Pittman, M. Carroll and C. DiMiceli. 2007. Corn and soybean mapping in the United States using MODIS time-series data sets. Agronomy Journal 99(6):1654-1664. https://doi.org/10.2134/agronj2007.0170
- Crawford, M.M., D. Tuia and H.L. Yang. 2013. Active learning: any value for classification of remotely sensed data? Proceedings of the IEEE 101(3):593-608. https://doi.org/10.1109/JPROC.2012.2231951
- Cristianini, N. and J.S. Taylor. 2000. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge, UK, 204pp.
- Demir, B.C., Persello and L. Bruzzone. 2011. Batch mode active learning methods for the interactive classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing 49(3):1014-1032. https://doi.org/10.1109/TGRS.2010.2072929
- Dopido, I., J. Li, P.R. Marpu, A. Plaza, J.M.B. Dias and J.A. Benediktsson. 2013. Semisupervised self-learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 51(7):4032-4044. https://doi.org/10.1109/TGRS.2012.2228275
- Foody, G.M., A. Mathur, C. Sanchez-Hernandez and D.S. Boyd. 2006. Training set size requirements for the classification of a specific class. Remote Sensing of Environment 104(1):1-14. https://doi.org/10.1016/j.rse.2006.03.004
- Kim, H.O. and J.M. Yeom. 2012. A study on object-based image analysis methods for land cover classification in agricultural areas. Journal of the Korean Association of Geographic Information Studies 15(4):26-41 (김현옥, 염종민.2012. 농촌지역 토지피복분류를 위한 객체기반 영상분석기법 연구. 한국지리정보학회지 15(4):26-41). https://doi.org/10.11108/kagis.2012.15.4.026
- Kim, M.H., C.K. Lee, H.K. Park, J.E. Lee, B.C. Koo and J.C. Shin. 2008. A study on rice growth and yield monitoring using medium resolution Landsat imagery. Korean Journal of Crop Science 53(4):388-393 (김민호, 이충근,박호기, 이재은, 구본철, 신진철. 2008.Landsat 위성영상을 이용한 벼 생육 및 수량 모니터링. 한국작물학회지 53(4):388-393).
- Kim, Y., N.W. Park, S.Y. Hong, K.D. Lee and H.Y. Yoo. 2014. Early production of large-area crop classification map using time-series vegetation index and past crop cultivation patterns - a case study in Iowa State, USA-. Korean Journal of Remote Sensing 30(4):493-503 (김예슬,박노욱, 홍석영, 이경도, 유희영. 2014. 시계열 식생지수와 과거 작물 재배 패턴을 이용한 대규모 작물 분류도의 조기 제작 -미국아이오와 주 사례연구-. 대한원격탐사학회지 30(4):493-503). https://doi.org/10.7780/kjrs.2014.30.4.7
- Lee, H.R., J.H. Baek and J.H. Baek. 2008. Prototype of crops information system based on ontology and WebGIS. Journal of the Korean Association of Geographic Information Studies 11(3): 43-51 (이홍로, 백정현, 백정호. 2008.Ontology와 WebGIS 기반 프로토타입 농작물 작황 정보시스템 구축. 한국지리정보학회지 11(3):43-51).
- Lee, S.W. and N.W. Park. 2011. Application of bayesian probability rule to the combination of spectral and temporal contextual information in landcover classification. Korean Journal of Remote Sensing 27(4):445-455 (이상원,박노욱. 2011. 토지 피복 분류에서 분광 영상정보와 시간 문맥 정보의 결합을 위한 베이지안 확률 규칙의 적용. 대한원격탐사학회지 27(4):445-455). https://doi.org/10.7780/kjrs.2011.27.4.445
- Lillesand, T., R.W. Kiefer and J. Chipman. 2007. Remote Sensing and Image Interpretation. Wiley, Hoboken, NJ, USA, 804pp.
- Lunetta, R.S., Y. Shao, J. Ediriwickrema and J.G. Lyon. 2010. Monitoring agricultural cropping patterns across the Laurentian Great Lakes basin using MODIS-NDVI data. International Journal of Applied Earth Observation and Geoinformation 12(2):81-88. https://doi.org/10.1016/j.jag.2009.11.005
- Luo, T., K. Kramer, D.B. Goldgof, L.O. Hall, S. Samson, A. Remsen, T. Hopkins and D. Cohn. 2005. Active learning to recognize multiple types of plankton. Journal of Machine Learning Research 6:589-613.
- McNairn, H., A. Kross, D. Lapen, R. Caves and J. Shang. 2014. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2. International Journal of Applied Earth Observation and Geoinformation 28:252-259. https://doi.org/10.1016/j.jag.2013.12.015
- Mitra, P., B. Uma Shankar and S.K. Pal. 2004. Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recognition Letters 25(9):1067-1074. https://doi.org/10.1016/j.patrec.2004.03.004
- Mun, Y.C. and H.R. Lee. 2008. Development of mobile system for crop situation investigation using GPS based on GIS. Journal of the Korean Association of Geographic Information Studies 11(4):22-31 (문영채, 이홍로.2008. GIS기반 GPS를 이용한 농작물 작황조사 모바일 시스템 구축. 한국지리정보학회지 11(4):22-31).
- Persello, C. and L. Bruzzone. 2014. Active and semisupervised learning for the classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing 52(11):6937-6956. https://doi.org/10.1109/TGRS.2014.2305805
- Rajan, S., J. Ghosh and M.M. Crawford. 2008. An active learning approach to hyperspectral data classification. IEEE Transactions on Geoscience and Remote Sensing 46(4):1231-1242. https://doi.org/10.1109/TGRS.2007.910220
- Sakamoto, T., A.A. Gitelson and T.J. Arkebauer. 2014. Near real-time prediction of U.S. corn yields based on time-series MODIS data. Remote Sensing of Environment 147:219-231. https://doi.org/10.1016/j.rse.2014.03.008
- Shao, Y., J.B. Campbell, G.N. Taff and B. Zheng. 2015. An analysis of cropland mask choice and ancillary data for annual corn yield forecasting using MODIS data. International Journal of Applied Earth Observation and Geoinformation 38:78-87. https://doi.org/10.1016/j.jag.2014.12.017
- Solano, R., K. Didan, A. Jacobson and A. Huete. 2010. MODIS Vegetation Index User's Guide. Vegetation Index and Phenology Lab, The University of Arizona, AZ, USA, 38pp.
- Tubiello, F.N. and G. Fischer. 2007. Reducing climate change impacts on agriculture: global and regional effects of mitigation, 2000-2080. Technological Forecasting and Social Change 74(7): 1030-1056. https://doi.org/10.1016/j.techfore.2006.05.027
- Tuia, D., F. Ratle, F. Pacifici, M.F. Kanevski and W.J. Emery. 2009. Active learning methods for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing 47(7):2218-2232. https://doi.org/10.1109/TGRS.2008.2010404
- Wardlow, B.D. and S.L. Egbert. 2008. Large-area crop mapping using time-series MODIS 250m NDVI data: an assessment for the U.S. Central Great Plains. Remote Sensing of Environment 112(3):1096-1116. https://doi.org/10.1016/j.rse.2007.07.019
- Zhang, J., L. Feng and F. Yao. 2014. Improved maize cultivated area estimation over a large scale combining MODIS-EVI time series data and crop phenological information. ISPRS Journal of Photogrammetry and Remote Sensing 94:102-113. https://doi.org/10.1016/j.isprsjprs.2014.04.023
- Zhao, M., F.A. Heinsch, R.R. Nemani and S.W. Running. 2005. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment 95(2): 164-176. https://doi.org/10.1016/j.rse.2004.12.011
- Zhong, L., P. Gong and G.S. Biging. 2014. Efficient corn and soybean mapping with temporal extendability: a multiyear experiment using Landsat imagery. Remote Sensing of Environment 140:1-13. https://doi.org/10.1016/j.rse.2013.08.023
피인용 문헌
- Self-Learning Based Land-Cover Classification Using Sequential Class Patterns from Past Land-Cover Maps vol.9, pp.9, 2017, https://doi.org/10.3390/rs9090921