References
- Trasatti, S., "Electrocatalysis in the Anodic Evolution of Oxygen and Chlorine," Electrochimica Acta, 29, 1503(1984). https://doi.org/10.1016/0013-4686(84)85004-5
-
Trasatti, S., "Electrocatalysis: Understanding the Success of
$DSA^{(R)}$ ," Electrochimica Acta, 45, 2377(2000). https://doi.org/10.1016/S0013-4686(00)00338-8 - Hong-li, F., "Review on Domestic Chlor-alkali Industry," Chlor-Alkali Industry, 9, 41(2000).
- Walton, C. W. and White, R. E., "Utility of An Empirical Method of Modeling Combined Zero Gap/attached Electrode Membrane Chlor-alkali Cells," Journal of The Electrochemical Society, 134, 565C(1987). https://doi.org/10.1149/1.2100894
- Khelifa, A., Moulay, S., Hannane, F., Benslimene, S. and Hecini, M., "Application of An Experimental Design Method to Study the Performance of Electrochlorination Cells," Desalination, 160, 91 (2004). https://doi.org/10.1016/S0011-9164(04)90021-5
- Bard, A. J. and Faulkner, L. R., "Electrochemical Methods: Fundamentals and Applications," 2nd Ed., Wiley, New York(2001).
- Tattum, L., "Cw's Asia Chemical Prices for the Week Ended May 26, 2009," IHS Chemical Week, New York(2009).
- Trasatti, S., "Progress in the Understanding of the Mechanism of Chlorine Evolution at Oxide Electrodes," Electrochimica Acta, 32, 369(1987). https://doi.org/10.1016/0013-4686(87)85001-6
- Over, H., "Atomic Scale Insights Into Electrochemical Versus Gas Phase Oxidation of Hcl Over Ruo2-based Catalysts: A Comparative Review," Electrochimica Acta, 93, 313(2013).
- Trasatti, S., "Electrocatalysis by Oxides-attempt at a Unifying Approach," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 111, 125(1980). https://doi.org/10.1016/S0022-0728(80)80084-2
- Harrison, J., Caldwell, D. and White, R., "Electrocatalysis and the Chlorine Evolution Reaction," Electrochimica Acta, 28, 1561(1983). https://doi.org/10.1016/0013-4686(83)85216-5
- Harrison, J., Caldwell, D. and White, R., "Electrocatalysis and the Chlorine Evolution Reaction-ii. Comparison of Anode Materials," Electrochimica acta, 29, 203(1984). https://doi.org/10.1016/0013-4686(84)87048-6
- Choi, J., Shim, S. and Yoon, J., "Design and Operating Parameters Affecting An Electrochlorination System," Journal of Industrial and Engineering Chemistry, 19, 215(2013). https://doi.org/10.1016/j.jiec.2012.08.004
-
Luu, T. L., Kim, J. and Yoon, J., "Physicochemical Properties of
$RuO_2$ and$IrO_2$ Electrodes Affecting Chlorine Evolutions," Journal of Industrial and Engineering Chemistry, 21, 400(2015). https://doi.org/10.1016/j.jiec.2014.02.052 - Choi, J., Park, C. G. and Yoon, J., "Application of An Electrochemical Chlorine-generation System Combined with Solar Energy as Appropriate Technology for Water Disinfection," Transactions of The Royal Society of Tropical Medicine and Hygiene, 107, 124(2013). https://doi.org/10.1093/trstmh/trs008
-
Jirkovsky, J., Hoffmannova, H., Klementova, M. and Krtil, P., "Particle Size Dependence of the Electrocatalytic Activity of Nanocrystalline
$RuO_2$ Electrodes," Journal of The Electrochemical Society, 153, E111(2006). https://doi.org/10.1149/1.2189953 - Ferro, S. and Battisti, A. D., "Electrocatalysis and Chlorine Evolution Reaction at Ruthenium Dioxide Deposited on Conductive Diamond," The Journal of Physical Chemistry B, 106, 2249(2002). https://doi.org/10.1021/jp012195i
- Cao, H., Lu, D., Lin, J., Ye, Q., Wu, J. and Zheng, G., "Novel Sb-doped Ruthenium Oxide Electrode with Ordered Nanotube Structure and Its Electrocatalytic Activity Toward Chlorine Evolution," Electrochimica Acta, 91, 234(2013). https://doi.org/10.1016/j.electacta.2012.12.118
-
Trieu, V., Schley, B., Natter, H., Kintrup, J., Bulan, A. and Hempelmann, R., "
$RuO_2$ -based Anodes with Tailored Surface Morphology for Improved Chlorine Electro-activity," Electrochimica Acta, 78, 188(2012). https://doi.org/10.1016/j.electacta.2012.05.122 - Pankratiev, Y. D., "Correlation Between Oxygen Binding Energy and Catalytic Activity of Oxides," Reaction Kinetics and Catalysis Letters, 20, 255(1982). https://doi.org/10.1007/BF02066306
-
Cordfunke, E. and Konings, R., "The Enthalpy of Formation of
$RuO_2$ ," Thermochimica acta, 129, 63(1988). https://doi.org/10.1016/0040-6031(88)87197-1 - Ruetschi, P. and Delahay, P., "Influence of Electrode Material on Oxygen Overvoltage: a Theoretical Analysis," The Journal of Chemical Physics, 23, 556(1955). https://doi.org/10.1063/1.1742029
- O'M, B. J., "Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen," Journal of Chemical Physics, 24, 817(1956). https://doi.org/10.1063/1.1742616
- Conway, B. and Salomon, M., "Electrochemical Reaction Orders: Applications to the Hydrogen-and Oxygen-evolution Reactions," Electrochimica Acta, 9, 1599(1964). https://doi.org/10.1016/0013-4686(64)80088-8
-
Zeradjanin, A. R., Menzel, N., Strasser, P. and Schuhmann, W., "Role of Water in the Chlorine Evolution Reaction at
$RuO_2$ -based electrodes-understanding Electrocatalysis as a Resonance Phenomenon," ChemSusChem, 5, 1897(2012). https://doi.org/10.1002/cssc.201200193 - Bianchi, G., "Fundamental and Applied Aspects of the Electrochemistry of Chlorine," Journal of Applied Electrochemistry, 1, 231(1971). https://doi.org/10.1007/BF00688644
- Erenburg, R., Krishtalik, L. and Bystrov, V., "Mechanism of Chlorine Evolution and Ionization on a Ruthenium Oxide Electrode," Elektrokhirniya, 8, 1740(1972).
-
Kuhn, A. and Mortimer, C., "The Kinetics of Chlorine Evolution and Reduction on Titanium-supported Metal Oxides Especially
$RuO_2$ and$IrO_2$ ," Journal of the Electrochemical Society, 120, 231(1973). https://doi.org/10.1149/1.2403425 - Hansen, H. A., Man, I. C., Studt, F., Abild-Pedersen, F., Bligaard, T. and Rossmeisl, J., "Electrochemical Chlorine Evolution at Rutile Oxide (110) Surfaces," Physical Chemistry Chemical Physics, 12, 283(2010). https://doi.org/10.1039/B917459A
-
Vallet, C., Tilak, B., Zuhr, R. and Chen, C. P., "Rutherford Backscattering Spectroscopic Study of the Failure Mechanism of (
$RuO_2$ +$TiO_2$ )/Ti Thin Film Electrodes in$H_2SO_4$ Solutions," Journal of the Electrochemical Society, 144, 1289(1997). https://doi.org/10.1149/1.1837586 - Zeradjanin, A. R., Schilling, T., Seisel, S., Bron, M. and Schuhmann, W., "Visualization of Chlorine Evolution at Dimensionally Stable Anodes by Means of Scanning Electrochemical Microscopy," Analytical chemistry, 83, 7645(2011). https://doi.org/10.1021/ac200677g
- Ardizzone, S., Carugati, A., Lodi, G. and Trasatti, S., "Surface Structure of Ruthenium Dioxide Electrodes and Kinetics of Chlorine Evolution," Journal of The Electrochemical Society, 129, 1689(1982). https://doi.org/10.1149/1.2124251
- Zeradjanin, A. R., Mantia, F. L., Masa, J. and Schuhmann, W., "Utilization of the Catalyst Layer of Dimensionally Stable Anodesinterplay of morphology and Active Surface Area," Electrochimica Acta, 82, 408(2012). https://doi.org/10.1016/j.electacta.2012.04.101
- Lodi, G., Sivieri, E., Battisti, A. D. and Trasatti, S., "Ruthenium Dioxide-based Film Electrodes," Journal of Applied Electrochemistry, 8, 135(1978). https://doi.org/10.1007/BF00617671
- Losev, V., Bune, N. Y. and Chuvaeva, L., "Specific Features of the Kinetics of Gas-evolving Reactions on Highly Active Electrodes," Electrochimica Acta, 34, 929(1989). https://doi.org/10.1016/0013-4686(89)80017-9
- Erenburg, R., Krishtalik, L. and Yaroshevskaya, I., "Mechanism of Chlorine Evolution at a Ruthenium-titanium Oxide Electrode," Soviet Electrochemistry, 11, 989(1975).
- Janssen, L., Visser, G. and Barendrecht, E., "Effect of Molecular Chlorine Diffusion on Theoretical Potential-current Density Relations for Chlorine Evolving Electrode," Electrochimica Acta, 28, 155(1983). https://doi.org/10.1016/0013-4686(83)85102-0
- Faita, G. and Fiori, G., "Anodic Discharge of Chloride Ions on Oxide Electrodes," Journal of Applied Electrochemistry, 2, 31(1972). https://doi.org/10.1007/BF00615189
- Chen, R., Trieu, V., Zeradjanin, A. R., Natter, H., Teschner, D., Kintrup, J., Bulan, A., Schuhmann, W. and Hempelmann, R., "Microstructural Impact of Anodic Coatings on the Electrochemical Chlorine Evolution Reaction," Physical Chemistry Chemical Physics, 14, 7392(2012). https://doi.org/10.1039/c2cp41163f
- Augustynski, J., Balsenc, L. and Hinden, J., "X-ray Photoelectron Spectroscopic Studies of Ruo2-based Film Electrodes," Journal of The Electrochemical Society, 125, 1093(1978). https://doi.org/10.1149/1.2131626
- Krishtalik, L. and Erenburg, R., "Kinetika Slozhnykh Elektrokhimicheskikh Reaktsii (the kinetics of complex electrochemical reactions)," Moscow: Nauka, 240(1981).
- Guerrini, E. and Trasatti, S., "Recent Developments in Understanding Factors of Electrocatalysis," Russian Journal of Electrochemistry, 42, 1017(2006). https://doi.org/10.1134/S1023193506100053
- Consonni, V., Trasatti, S., Pollak, F. and O'Grady, W., "Mechanism of Chlorine Evolution on Oxide Anodes Study of Ph Effects," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 228, 393(1987). https://doi.org/10.1016/0022-0728(87)80119-5
-
Hepel, T., Pollak, F. H. and O'Grady, W. E., "Chlorine Evolution and Reduction Processes at Oriented Single-crystal
$RuO_2$ Electrodes," Journal of The Electrochemical Society, 133, 69(1986). https://doi.org/10.1149/1.2108547 - Burke, L. D. and O'Neill, J. F., "Some Aspects of the Chlorine Evolution Reaction at Ruthenium Dioxide Anodes," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101, 341(1979). https://doi.org/10.1016/S0022-0728(79)80045-5
- Krishtalik, L., "Kinetics and Mechanism of Anodic Chlorine and Oxygen Evolution Reactions on Transition Metal Oxide Electrodes," Electrochimica Acta, 26, 329(1981). https://doi.org/10.1016/0013-4686(81)85019-0
-
Fernandez, J., M. Gennero de Chialvo and Chialvo, A., "Kinetic Study of the Chlorine Electrode Reaction on Ti/
$RuO_2$ Through The Polarisation Resistance: Part III: Proposal of a Reaction Mechanism," Electrochimica Acta, 47, 1145(2002). https://doi.org/10.1016/S0013-4686(01)00839-8 - Thomassen, M., Karlsen, C., Borresen, B. and Tunold, R., "Kinetic Investigation of the Chlorine Reduction Reaction on Electrochemically Oxidised Ruthenium," Electrochimica Acta, 51, 2909(2006). https://doi.org/10.1016/j.electacta.2005.08.024
- Comninellis, C., "Electrocatalysis in the Electrochemical Conversion/combustion of Organic Pollutants for Waste Water Treatment," Electrochimica Acta, 39, 1857(1994). https://doi.org/10.1016/0013-4686(94)85175-1
- Erenburg, R., Krishtalik, L. and Bystrov, V., "Chlorine Evolution Mechanism at a Ruthenium Dioxide-titanium Dioxide Electrode," Sov. Electrochem, 8, 1240(1972).
- Janssen, L., Starmans, L., Visser, J. and Barendrecht, E., "Mechanism of the Chlorine Evolution on a Ruthenium Oxide/titanium Oxide Electrode and on a Ruthenium Electrode," Electrochimica Acta, 22, 1093(1977). https://doi.org/10.1016/0013-4686(77)80045-5
-
Denton, D., Harrison, J. and Knowles, R., "Chlorine Evolution and Reduction on
$RuO_2$ /$TiO_2$ Electrodes," Electrochimica Acta, 24, 521(1979). https://doi.org/10.1016/0013-4686(79)85027-6 - Erenburg, R., "Mechanism of the Chlorine Reaction of Ruthenium-titanium Oxide Anodes," Soviet Electrochemistry, 20, 1481(1984).
-
Fernandez, J., M. Gennero de Chialvo and Chialvo, A., "Kinetic Study of the Chlorine Electrode Reaction on Ti/
$RuO_2$ Through the Polarisation Resistance: Part I: Experimental Results and Analysis of the pH Effects," Electrochimica Acta, 47, 1129(2002). https://doi.org/10.1016/S0013-4686(01)00837-4 -
Fernandez, J., M. Gennero de Chialvo and Chialvo, A., "Kinetic Study of the Chlorine Electrode Reaction on Ti/
$RuO_2$ Through the Polarisation Resistance: Part II: Mechanistic Analysis," Electrochimica Acta, 47, 1137(2002). https://doi.org/10.1016/S0013-4686(01)00838-6
Cited by
- 염산용액에서 사이클론형 전해방식에 의한 주석의 전해채취 vol.26, pp.3, 2015, https://doi.org/10.7844/kirr.2017.26.3.61
- 티오요소와 염산 혼합 용액에서 사이클론 전해에 의한 은(Ag) 회수 vol.26, pp.4, 2015, https://doi.org/10.7844/kirr.2017.26.4.62
- 콜로이드법으로 합성한 RuO2 전극촉매의 연구 vol.30, pp.3, 2015, https://doi.org/10.7316/khnes.2019.30.3.193
- An experiment and model of ceramic (alumina) hollow fiber membrane contactors for chemical absorption of CO2 in aqueous monoethanolamine (MEA) solutions vol.36, pp.10, 2015, https://doi.org/10.1007/s11814-019-0351-6
- Electrooxidation of chloride-ions on Ti/Pt anodes vol.2019, pp.6, 2015, https://doi.org/10.32434/0321-4095-2019-127-6-39-46
- 불용성 산화 전극(DSA)의 최신 연구 동향 vol.23, pp.1, 2015, https://doi.org/10.5229/jkes.2020.23.1.1
- Electrolysis of sodium chloride solutions on Ti/Pt anodes under current reversal conditions vol.2020, pp.2, 2015, https://doi.org/10.32434/0321-4095-2020-129-2-36-43
- Electrochemical Treatment of High Concentration Ammonia using RuO2/Ti Anode and TiO2 Nanotube Cathode vol.42, pp.7, 2015, https://doi.org/10.4491/ksee.2020.42.7.339