DOI QR코드

DOI QR Code

A Review of Chlorine Evolution Mechanism on Dimensionally Stable Anode (DSA®)

DSA 전극에서 염소 발생 메커니즘

  • Kim, Jiye (School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Seoul National University) ;
  • Kim, Choonsoo (School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Seoul National University) ;
  • Kim, Seonghwan (School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Seoul National University) ;
  • Yoon, Jeyong (School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Seoul National University)
  • 김지예 (서울대학교 공과대학 화학생물공학부, 화학공정신기술 연구소) ;
  • 김춘수 (서울대학교 공과대학 화학생물공학부, 화학공정신기술 연구소) ;
  • 김성환 (서울대학교 공과대학 화학생물공학부, 화학공정신기술 연구소) ;
  • 윤제용 (서울대학교 공과대학 화학생물공학부, 화학공정신기술 연구소)
  • Received : 2015.01.02
  • Accepted : 2015.01.30
  • Published : 2015.10.01

Abstract

Chlor-alkali industry is one of the largest electrochemical processes which annually producing 70 million tons of sodium hydroxide and chlorine from sodium chloride solution. $DSA^{(R)}$ (Dimensionally Stable Anodes) electrodes such as $RuO_2$ and $IrO_2$, which is popular in chlor-alkali process, have been investigated to improve the chlorine generation efficiency. Although DSA electrode has been developed with various researches, understanding of the chlorine evolution mechanism is essential to the development of highly efficient DSA electrode. In this review paper, chlorine generation mechanisms are summarized and that of key factors are identified to systematically understand the chlorine generation mechanism. Rate determining step, effect of pH, reaction intermediate, and electrode crystal structure were intensively overviewed as key factors of the chlorine mechanism.

클로로알카리 산업은 염화나트륨 수용액의 전기분해로 연간 약 7천만 톤의 가성소다 및 염소를 생산하는 전 세계적으로 가장 큰 전기화학 공정 중 하나이다. 클로로알카리 공정에서는 DSA(Dimensionally Stable Anodes) 전극인 $RuO_2$$IrO_2$를 주로 사용하여 염소를 생산하며 상업적으로 사용되고 있는 전극에 비하여 염소 발생 효율이 높은 전극을 개발하려는 연구가 계속되고 있다. 그러나 보다 염소 발생 효율이 좋은 전극을 개발하기 위해서는 DSA 전극에서의 염소 발생 메커니즘에 대한 이해가 뒷받침되어야 한다. 따라서 본 글에서는 기존 연구를 중심으로 DSA 전극에서 염소 발생 메커니즘 연구가 현재까지 어떻게 발전되어 왔는지 검토하고 염소 발생 메커니즘의 핵심적인 요인들을 분석 및 정리하여 DSA 전극에서 염소 발생을 체계적으로 이해하는데 도움이 되고자 한다.

Keywords

References

  1. Trasatti, S., "Electrocatalysis in the Anodic Evolution of Oxygen and Chlorine," Electrochimica Acta, 29, 1503(1984). https://doi.org/10.1016/0013-4686(84)85004-5
  2. Trasatti, S., "Electrocatalysis: Understanding the Success of $DSA^{(R)}$," Electrochimica Acta, 45, 2377(2000). https://doi.org/10.1016/S0013-4686(00)00338-8
  3. Hong-li, F., "Review on Domestic Chlor-alkali Industry," Chlor-Alkali Industry, 9, 41(2000).
  4. Walton, C. W. and White, R. E., "Utility of An Empirical Method of Modeling Combined Zero Gap/attached Electrode Membrane Chlor-alkali Cells," Journal of The Electrochemical Society, 134, 565C(1987). https://doi.org/10.1149/1.2100894
  5. Khelifa, A., Moulay, S., Hannane, F., Benslimene, S. and Hecini, M., "Application of An Experimental Design Method to Study the Performance of Electrochlorination Cells," Desalination, 160, 91 (2004). https://doi.org/10.1016/S0011-9164(04)90021-5
  6. Bard, A. J. and Faulkner, L. R., "Electrochemical Methods: Fundamentals and Applications," 2nd Ed., Wiley, New York(2001).
  7. Tattum, L., "Cw's Asia Chemical Prices for the Week Ended May 26, 2009," IHS Chemical Week, New York(2009).
  8. Trasatti, S., "Progress in the Understanding of the Mechanism of Chlorine Evolution at Oxide Electrodes," Electrochimica Acta, 32, 369(1987). https://doi.org/10.1016/0013-4686(87)85001-6
  9. Over, H., "Atomic Scale Insights Into Electrochemical Versus Gas Phase Oxidation of Hcl Over Ruo2-based Catalysts: A Comparative Review," Electrochimica Acta, 93, 313(2013).
  10. Trasatti, S., "Electrocatalysis by Oxides-attempt at a Unifying Approach," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 111, 125(1980). https://doi.org/10.1016/S0022-0728(80)80084-2
  11. Harrison, J., Caldwell, D. and White, R., "Electrocatalysis and the Chlorine Evolution Reaction," Electrochimica Acta, 28, 1561(1983). https://doi.org/10.1016/0013-4686(83)85216-5
  12. Harrison, J., Caldwell, D. and White, R., "Electrocatalysis and the Chlorine Evolution Reaction-ii. Comparison of Anode Materials," Electrochimica acta, 29, 203(1984). https://doi.org/10.1016/0013-4686(84)87048-6
  13. Choi, J., Shim, S. and Yoon, J., "Design and Operating Parameters Affecting An Electrochlorination System," Journal of Industrial and Engineering Chemistry, 19, 215(2013). https://doi.org/10.1016/j.jiec.2012.08.004
  14. Luu, T. L., Kim, J. and Yoon, J., "Physicochemical Properties of $RuO_2$ and $IrO_2$ Electrodes Affecting Chlorine Evolutions," Journal of Industrial and Engineering Chemistry, 21, 400(2015). https://doi.org/10.1016/j.jiec.2014.02.052
  15. Choi, J., Park, C. G. and Yoon, J., "Application of An Electrochemical Chlorine-generation System Combined with Solar Energy as Appropriate Technology for Water Disinfection," Transactions of The Royal Society of Tropical Medicine and Hygiene, 107, 124(2013). https://doi.org/10.1093/trstmh/trs008
  16. Jirkovsky, J., Hoffmannova, H., Klementova, M. and Krtil, P., "Particle Size Dependence of the Electrocatalytic Activity of Nanocrystalline $RuO_2$ Electrodes," Journal of The Electrochemical Society, 153, E111(2006). https://doi.org/10.1149/1.2189953
  17. Ferro, S. and Battisti, A. D., "Electrocatalysis and Chlorine Evolution Reaction at Ruthenium Dioxide Deposited on Conductive Diamond," The Journal of Physical Chemistry B, 106, 2249(2002). https://doi.org/10.1021/jp012195i
  18. Cao, H., Lu, D., Lin, J., Ye, Q., Wu, J. and Zheng, G., "Novel Sb-doped Ruthenium Oxide Electrode with Ordered Nanotube Structure and Its Electrocatalytic Activity Toward Chlorine Evolution," Electrochimica Acta, 91, 234(2013). https://doi.org/10.1016/j.electacta.2012.12.118
  19. Trieu, V., Schley, B., Natter, H., Kintrup, J., Bulan, A. and Hempelmann, R., "$RuO_2$-based Anodes with Tailored Surface Morphology for Improved Chlorine Electro-activity," Electrochimica Acta, 78, 188(2012). https://doi.org/10.1016/j.electacta.2012.05.122
  20. Pankratiev, Y. D., "Correlation Between Oxygen Binding Energy and Catalytic Activity of Oxides," Reaction Kinetics and Catalysis Letters, 20, 255(1982). https://doi.org/10.1007/BF02066306
  21. Cordfunke, E. and Konings, R., "The Enthalpy of Formation of $RuO_2$," Thermochimica acta, 129, 63(1988). https://doi.org/10.1016/0040-6031(88)87197-1
  22. Ruetschi, P. and Delahay, P., "Influence of Electrode Material on Oxygen Overvoltage: a Theoretical Analysis," The Journal of Chemical Physics, 23, 556(1955). https://doi.org/10.1063/1.1742029
  23. O'M, B. J., "Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen," Journal of Chemical Physics, 24, 817(1956). https://doi.org/10.1063/1.1742616
  24. Conway, B. and Salomon, M., "Electrochemical Reaction Orders: Applications to the Hydrogen-and Oxygen-evolution Reactions," Electrochimica Acta, 9, 1599(1964). https://doi.org/10.1016/0013-4686(64)80088-8
  25. Zeradjanin, A. R., Menzel, N., Strasser, P. and Schuhmann, W., "Role of Water in the Chlorine Evolution Reaction at $RuO_2$-based electrodes-understanding Electrocatalysis as a Resonance Phenomenon," ChemSusChem, 5, 1897(2012). https://doi.org/10.1002/cssc.201200193
  26. Bianchi, G., "Fundamental and Applied Aspects of the Electrochemistry of Chlorine," Journal of Applied Electrochemistry, 1, 231(1971). https://doi.org/10.1007/BF00688644
  27. Erenburg, R., Krishtalik, L. and Bystrov, V., "Mechanism of Chlorine Evolution and Ionization on a Ruthenium Oxide Electrode," Elektrokhirniya, 8, 1740(1972).
  28. Kuhn, A. and Mortimer, C., "The Kinetics of Chlorine Evolution and Reduction on Titanium-supported Metal Oxides Especially $RuO_2$ and $IrO_2$," Journal of the Electrochemical Society, 120, 231(1973). https://doi.org/10.1149/1.2403425
  29. Hansen, H. A., Man, I. C., Studt, F., Abild-Pedersen, F., Bligaard, T. and Rossmeisl, J., "Electrochemical Chlorine Evolution at Rutile Oxide (110) Surfaces," Physical Chemistry Chemical Physics, 12, 283(2010). https://doi.org/10.1039/B917459A
  30. Vallet, C., Tilak, B., Zuhr, R. and Chen, C. P., "Rutherford Backscattering Spectroscopic Study of the Failure Mechanism of ($RuO_2$+ $TiO_2$)/Ti Thin Film Electrodes in $H_2SO_4$ Solutions," Journal of the Electrochemical Society, 144, 1289(1997). https://doi.org/10.1149/1.1837586
  31. Zeradjanin, A. R., Schilling, T., Seisel, S., Bron, M. and Schuhmann, W., "Visualization of Chlorine Evolution at Dimensionally Stable Anodes by Means of Scanning Electrochemical Microscopy," Analytical chemistry, 83, 7645(2011). https://doi.org/10.1021/ac200677g
  32. Ardizzone, S., Carugati, A., Lodi, G. and Trasatti, S., "Surface Structure of Ruthenium Dioxide Electrodes and Kinetics of Chlorine Evolution," Journal of The Electrochemical Society, 129, 1689(1982). https://doi.org/10.1149/1.2124251
  33. Zeradjanin, A. R., Mantia, F. L., Masa, J. and Schuhmann, W., "Utilization of the Catalyst Layer of Dimensionally Stable Anodesinterplay of morphology and Active Surface Area," Electrochimica Acta, 82, 408(2012). https://doi.org/10.1016/j.electacta.2012.04.101
  34. Lodi, G., Sivieri, E., Battisti, A. D. and Trasatti, S., "Ruthenium Dioxide-based Film Electrodes," Journal of Applied Electrochemistry, 8, 135(1978). https://doi.org/10.1007/BF00617671
  35. Losev, V., Bune, N. Y. and Chuvaeva, L., "Specific Features of the Kinetics of Gas-evolving Reactions on Highly Active Electrodes," Electrochimica Acta, 34, 929(1989). https://doi.org/10.1016/0013-4686(89)80017-9
  36. Erenburg, R., Krishtalik, L. and Yaroshevskaya, I., "Mechanism of Chlorine Evolution at a Ruthenium-titanium Oxide Electrode," Soviet Electrochemistry, 11, 989(1975).
  37. Janssen, L., Visser, G. and Barendrecht, E., "Effect of Molecular Chlorine Diffusion on Theoretical Potential-current Density Relations for Chlorine Evolving Electrode," Electrochimica Acta, 28, 155(1983). https://doi.org/10.1016/0013-4686(83)85102-0
  38. Faita, G. and Fiori, G., "Anodic Discharge of Chloride Ions on Oxide Electrodes," Journal of Applied Electrochemistry, 2, 31(1972). https://doi.org/10.1007/BF00615189
  39. Chen, R., Trieu, V., Zeradjanin, A. R., Natter, H., Teschner, D., Kintrup, J., Bulan, A., Schuhmann, W. and Hempelmann, R., "Microstructural Impact of Anodic Coatings on the Electrochemical Chlorine Evolution Reaction," Physical Chemistry Chemical Physics, 14, 7392(2012). https://doi.org/10.1039/c2cp41163f
  40. Augustynski, J., Balsenc, L. and Hinden, J., "X-ray Photoelectron Spectroscopic Studies of Ruo2-based Film Electrodes," Journal of The Electrochemical Society, 125, 1093(1978). https://doi.org/10.1149/1.2131626
  41. Krishtalik, L. and Erenburg, R., "Kinetika Slozhnykh Elektrokhimicheskikh Reaktsii (the kinetics of complex electrochemical reactions)," Moscow: Nauka, 240(1981).
  42. Guerrini, E. and Trasatti, S., "Recent Developments in Understanding Factors of Electrocatalysis," Russian Journal of Electrochemistry, 42, 1017(2006). https://doi.org/10.1134/S1023193506100053
  43. Consonni, V., Trasatti, S., Pollak, F. and O'Grady, W., "Mechanism of Chlorine Evolution on Oxide Anodes Study of Ph Effects," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 228, 393(1987). https://doi.org/10.1016/0022-0728(87)80119-5
  44. Hepel, T., Pollak, F. H. and O'Grady, W. E., "Chlorine Evolution and Reduction Processes at Oriented Single-crystal $RuO_2$ Electrodes," Journal of The Electrochemical Society, 133, 69(1986). https://doi.org/10.1149/1.2108547
  45. Burke, L. D. and O'Neill, J. F., "Some Aspects of the Chlorine Evolution Reaction at Ruthenium Dioxide Anodes," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101, 341(1979). https://doi.org/10.1016/S0022-0728(79)80045-5
  46. Krishtalik, L., "Kinetics and Mechanism of Anodic Chlorine and Oxygen Evolution Reactions on Transition Metal Oxide Electrodes," Electrochimica Acta, 26, 329(1981). https://doi.org/10.1016/0013-4686(81)85019-0
  47. Fernandez, J., M. Gennero de Chialvo and Chialvo, A., "Kinetic Study of the Chlorine Electrode Reaction on Ti/$RuO_2$ Through The Polarisation Resistance: Part III: Proposal of a Reaction Mechanism," Electrochimica Acta, 47, 1145(2002). https://doi.org/10.1016/S0013-4686(01)00839-8
  48. Thomassen, M., Karlsen, C., Borresen, B. and Tunold, R., "Kinetic Investigation of the Chlorine Reduction Reaction on Electrochemically Oxidised Ruthenium," Electrochimica Acta, 51, 2909(2006). https://doi.org/10.1016/j.electacta.2005.08.024
  49. Comninellis, C., "Electrocatalysis in the Electrochemical Conversion/combustion of Organic Pollutants for Waste Water Treatment," Electrochimica Acta, 39, 1857(1994). https://doi.org/10.1016/0013-4686(94)85175-1
  50. Erenburg, R., Krishtalik, L. and Bystrov, V., "Chlorine Evolution Mechanism at a Ruthenium Dioxide-titanium Dioxide Electrode," Sov. Electrochem, 8, 1240(1972).
  51. Janssen, L., Starmans, L., Visser, J. and Barendrecht, E., "Mechanism of the Chlorine Evolution on a Ruthenium Oxide/titanium Oxide Electrode and on a Ruthenium Electrode," Electrochimica Acta, 22, 1093(1977). https://doi.org/10.1016/0013-4686(77)80045-5
  52. Denton, D., Harrison, J. and Knowles, R., "Chlorine Evolution and Reduction on $RuO_2$/$TiO_2$ Electrodes," Electrochimica Acta, 24, 521(1979). https://doi.org/10.1016/0013-4686(79)85027-6
  53. Erenburg, R., "Mechanism of the Chlorine Reaction of Ruthenium-titanium Oxide Anodes," Soviet Electrochemistry, 20, 1481(1984).
  54. Fernandez, J., M. Gennero de Chialvo and Chialvo, A., "Kinetic Study of the Chlorine Electrode Reaction on Ti/$RuO_2$ Through the Polarisation Resistance: Part I: Experimental Results and Analysis of the pH Effects," Electrochimica Acta, 47, 1129(2002). https://doi.org/10.1016/S0013-4686(01)00837-4
  55. Fernandez, J., M. Gennero de Chialvo and Chialvo, A., "Kinetic Study of the Chlorine Electrode Reaction on Ti/$RuO_2$ Through the Polarisation Resistance: Part II: Mechanistic Analysis," Electrochimica Acta, 47, 1137(2002). https://doi.org/10.1016/S0013-4686(01)00838-6

Cited by

  1. 염산용액에서 사이클론형 전해방식에 의한 주석의 전해채취 vol.26, pp.3, 2015, https://doi.org/10.7844/kirr.2017.26.3.61
  2. 티오요소와 염산 혼합 용액에서 사이클론 전해에 의한 은(Ag) 회수 vol.26, pp.4, 2015, https://doi.org/10.7844/kirr.2017.26.4.62
  3. 콜로이드법으로 합성한 RuO2 전극촉매의 연구 vol.30, pp.3, 2015, https://doi.org/10.7316/khnes.2019.30.3.193
  4. An experiment and model of ceramic (alumina) hollow fiber membrane contactors for chemical absorption of CO2 in aqueous monoethanolamine (MEA) solutions vol.36, pp.10, 2015, https://doi.org/10.1007/s11814-019-0351-6
  5. Electrooxidation of chloride-ions on Ti/Pt anodes vol.2019, pp.6, 2015, https://doi.org/10.32434/0321-4095-2019-127-6-39-46
  6. 불용성 산화 전극(DSA)의 최신 연구 동향 vol.23, pp.1, 2015, https://doi.org/10.5229/jkes.2020.23.1.1
  7. Electrolysis of sodium chloride solutions on Ti/Pt anodes under current reversal conditions vol.2020, pp.2, 2015, https://doi.org/10.32434/0321-4095-2020-129-2-36-43
  8. Electrochemical Treatment of High Concentration Ammonia using RuO2/Ti Anode and TiO2 Nanotube Cathode vol.42, pp.7, 2015, https://doi.org/10.4491/ksee.2020.42.7.339