DOI QR코드

DOI QR Code

디지털 전산모사를 위한 방법론 비교분석

Comparative analysis of methods for digital simulation

  • 이덕균 (대구대학교 기초교육대학) ;
  • 박지은 (대구대학교 기초교육대학)
  • 투고 : 2015.07.21
  • 심사 : 2015.09.20
  • 발행 : 2015.09.28

초록

디지털 전산모사(computer simulation)는 모든 융합기술 분야에서 실험을 통한 이론 정립에 중요한 역할을 담당하고 있으며, 보간법은 격자위에서의 알고 있는 값을 이용하여 모르는 값을 알아내는 방법론이다. 그러므로 보간법의 선택은 디지털 전산모사에서 아주 중요한 문제이다. 본 논문에서는 디지털 전산모사 작업에서 사용되는 6종류의 보간법(Quartic-Lagrangian, Cubic Spline, Fourier, Hermite, PWENO, SL-WENO)의 성능을 비교, 평가한다. 디지털 전산모사의 선형 이류 방정식을 각 방법에 적용함으로써 장단점을 분석하였다. 각 방법론의 성능을 비교하기 위하여, 정확도 계산과 오차 함수를 도입한다. 정확도의 계산은 잘 알고 있는 $L^1-norm$ 계산, 분산 계산, 소멸 오차 그리고 전체적인 오차를 시행한다. 고차의 방법론이 효과적이기는 하나 진동 등 기타의 요인이 발생한다.

Computer simulation plays an important role for a theoretical foundation in convergence technology and the interpolation is to know the unknown values from known values on grid points. Therefore it is an important problem to select an interpolation method for digital simulation. The aim of this paper is to compare analysis of interpolation methods for digital simulation. we test six different interpolation methods namely: Quartic-Lagrangian, Cubic Spline, Fourier, Hermit, PWENO and SL-WENO. Through digital simulation of a linear advection equation, we analyse pros and cons for each method. In order to compare performance, we introduce accuracy computing and Error functions. The accuracy computing is used well-known $L^1-norm$ and the Error functions are dispersion function, dissipation function and total error function. High-order methods well apply to computer simulation, unfortunately, side-effects (Oscillation) happen.

키워드

참고문헌

  1. N. Crouseilles, T. Respanud, E. Sonnendrucker, A Forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Computer Physics Communications, Vol. 180, pp. 1730-1745, 2009. https://doi.org/10.1016/j.cpc.2009.04.024
  2. E. Sonnendrucker, J. Roche, P. Bertrand, A. Ghizzo, The semi-lagrangian method for the numerical resolution of the Vlasov equation. Journal of Computer Physics, Vol. 149, pp. 201-220, 1999. https://doi.org/10.1006/jcph.1998.6148
  3. A. Staniforth, J. Cote, Semi-Lagrangian integration schemes for atmospheric models A review. Monthly Weather Review, Vol. 119, pp. 2206-2223, 1991. https://doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2
  4. M. Zerroukat, N. Wood, A. Staniforth, A monotonic and positive-definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme. Q. J. R. Meteorol. Soc., Vol. 131, pp. 2923-2936, 2005. https://doi.org/10.1256/qj.04.97
  5. M. Zerroukat, N. Wood, A. Staniforth, The Parabolic Spline Method (PSM) for conservative transport problems. International Journal of Numerical Methods Fluids, Vol. 51, pp. 1297-1318, 2006. https://doi.org/10.1002/fld.1154
  6. J. M. Qui, A. Christlieb, A Conservative high order semi-Lagrangian WENO method for the Vlasov equation. Journal of Computational Physics, Vol. 229, pp. 1130-1149, 2010. https://doi.org/10.1016/j.jcp.2009.10.016
  7. C. Z. Cheng, G. Knorr, The integration of the Vlasov equation in configuration space. Journal of Computational Physics, Vol. 22, pp. 330-351, 1976. https://doi.org/10.1016/0021-9991(76)90053-X
  8. J. A. Carrillo, F. Vecil, Nonoscillatory interpolation methods applied to Vlasov-Based models. SIAM Journal on Scientific Computing, Vol. 29, No. 3, pp. 1179-1206, 2007. https://doi.org/10.1137/050644549
  9. S. G. Wallis, J. R. Manson, Accurate numerical simulation of advection using large time steps. International Journal for Numerical Methods in Fluids, Vol. 24, pp. 127-139, 1997. https://doi.org/10.1002/(SICI)1097-0363(19970130)24:2<127::AID-FLD477>3.0.CO;2-R
  10. G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes. Journal of Computational Physics, Vol. 126, pp. 202-228, 1996. https://doi.org/10.1006/jcph.1996.0130
  11. R. J. Leveque, High-resolution Conservative Algorithms for Advection in Incompressible Flow. SIAM Journal on Numerical Analysis, Vol. 33, No. 2, pp. 627-665, 1996. https://doi.org/10.1137/0733033
  12. X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes. Journal of Computational Physics, Vol. 115, pp. 200-212, 1994. https://doi.org/10.1006/jcph.1994.1187
  13. C.-W. Shu, High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Review, Vol. 51, pp. 82-126, 2009. https://doi.org/10.1137/070679065
  14. C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, Vol. 77, No. 2, pp. 439-471, 1988. https://doi.org/10.1016/0021-9991(88)90177-5
  15. L. L. Takacs, A two-step scheme for the advection equation with minimized dissipation and dispersion errors. Monthly Weather Review, Vol. 113, pp. 1050-1065, 1985. https://doi.org/10.1175/1520-0493(1985)113<1050:ATSSFT>2.0.CO;2