과제정보
연구 과제 주관 기관 : Yang Young Foundation
참고문헌
- Arthanareeswaran, G., Sriyamuna Devi, T. and Raajenthiren, M. (2008), "Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I", Sep. Purif. Technol., 64(1), 38-47. https://doi.org/10.1016/j.seppur.2008.08.010
-
Bae, T.-H. and Tak, T.-M. (2005), "Effect of
$TiO_{2}$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 249(1-2), 1-8. https://doi.org/10.1016/j.memsci.2004.09.008 - Biesheuvel, P.M. and Verweij, H. (1999), "Design of ceramic membrane supports: permeability, tensile strength and stress", J. Membr. Sci., 156(1), 141-152. https://doi.org/10.1016/S0376-7388(98)00335-4
- Bottino, A., Capannelli, G. and Comite, A. (2005), "Novel porous poly (vinylidene fluoride) membranes for membrane distillation", Desalination, 183(1), 375-382. https://doi.org/10.1016/j.desal.2005.03.040
-
Cao, X., Ma, J., Shi, X. and Ren, Z. (2006), "Effect of
$TiO_{2}$ nanoparticle size on the performance of PVDF membrane", Appl. Surf. Sci., 253(4), 2003-2010. https://doi.org/10.1016/j.apsusc.2006.03.090 - Chae, S.-R., Yamamura, H., Ikeda, K. and Watanabe, Y. (2008), "Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination", Water Res., 42(8), 2029-2042. https://doi.org/10.1016/j.watres.2007.12.011
- Hashino, M., Katagiri, T., Kubota, N., Ohmukai, Y., Maruyama, T. and Matsuyama, H. (2011), "Effect of surface roughness of hollow fiber membranes with gear-shaped structure on membrane fouling by sodium alginate", J. Membr. Sci., 366(1), 389-397. https://doi.org/10.1016/j.memsci.2010.10.025
- Hernandez, A., Calvo, J., Pradanos, P. and Tejerina, F. (1996), "Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method", J. Membr. Sci., 112(1), 1-12. https://doi.org/10.1016/0376-7388(95)00025-9
- Hong, J. and He, Y. (2012), "Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes", Desalination, 302(0), 71-79. https://doi.org/10.1016/j.desal.2012.07.001
- Hsieh, H. (1996), Inorganic Membranes for Separation and Reaction, Elsevier.
-
Lapointe, J.-F., Gauthier, S.F., Pouliot, Y. and Bouchard, C. (2005), "Characterization of interactions between
$\beta$ -lactoglobulin tryptic peptides and a nanofiltration membrane: Impact on the surface membrane properties as determined by contact angle measurements", J. Membr. Sci., 261(1), 36-48. https://doi.org/10.1016/j.memsci.2005.03.030 -
Li, J.-F., Xu, Z.-L., Yang, H., Yu, L.-Y. and Liu, M. (2009), "Effect of
$TiO_{2}$ nanoparticles on the surface morphology and performance of microporous PES membrane", Appl. Surf. Sci., 255(9), 4725-4732. https://doi.org/10.1016/j.apsusc.2008.07.139 - Ma, X., Wigington, B. and Bouchard, D. (2010), "Fullerene C60: Surface Energy and Interfacial Interactions in Aqueous Systems", Langmuir, 26(14), 11886-11893. https://doi.org/10.1021/la101109h
- Madaeni, S.S. and Yeganeh, M.K. (2003), "Microfiltration of emulsified oil wastewater", J. Porous Mater., 10(2), 131-138. https://doi.org/10.1023/A:1026035830187
-
Marshall, A., Munro, P. and Tragardh, G. (1997), "Influence of permeate flux on fouling during the microfiltration of
$\beta$ -lactoglobulin solutions under cross-flow conditions", J. Membr. Sci., 130(1), 23-30. https://doi.org/10.1016/S0376-7388(97)00004-5 - Ochoa, N., Masuelli, M. and Marchese, J. (2003), "Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes", J. Membr. Sci., 226(1), 203-211. https://doi.org/10.1016/j.memsci.2003.09.004
-
Oh, S.J., Kim, N. and Lee, Y.T. (2009), "Preparation and characterization of PVDF/
$TiO_{2}$ organic-inorganic composite membranes for fouling resistance improvement", J. Membr. Sci., 345(1), 13-20. https://doi.org/10.1016/j.memsci.2009.08.003 - Oshima, K., Evans-Strickfaden, T., Highsmith, A. and Ades, E. (1996), "The use of a microporous polyvinylidene fluoride (PVDF) membrane filter to separate contaminating viral particles from biologically important proteins", Biologicals, 24(2), 137-145. https://doi.org/10.1006/biol.1996.0018
-
Park, H.-H., Lim, C.-W., Jo, H.-D., Choi, W.-K. and Lee, H.-K. (2007), "Absorption of
$SO_{2}$ using PVDF hollow fiber membranes with PEG as an additive", Korean J. Chem. Eng., 24(4), 693-697. https://doi.org/10.1007/s11814-007-0028-4 - Qin, J. and Chung, T.-S. (1999), "Effect of dope flow rate on the morphology, separation performance, thermal and mechanical properties of ultrafiltration hollow fibre membranes", J. Membr. Sci., 157(1), 35-51. https://doi.org/10.1016/S0376-7388(98)00361-5
-
Rahimpour, A., Jahanshahi, M., Rajaeian, B. and Rahimnejad, M. (2011), "
$TiO_{2}$ entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties", Desalination, 278(1), 343-353. https://doi.org/10.1016/j.desal.2011.05.049 - Rana, D. and Matsuura, T. (2010), "Surface modifications for antifouling membranes", Chem. Rev., 110(4), 2448-2471. https://doi.org/10.1021/cr800208y
- Sarbolouki, M. (1982), "A general diagram for estimating pore size of ultrafiltration and reverse osmosis membranes", Sep. Sci. Technol., 17(2), 381-386. https://doi.org/10.1080/01496398208068547
- Tan, X., Tan, S., Teo, W. and Li, K. (2006), "Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water", J. Membr. Sci., 271(1), 59-68. https://doi.org/10.1016/j.memsci.2005.06.057
- Taurozzi, J.S., Crock, C.A. and Tarabara, V.V. (2011), "C60-polysulfone nanocomposite membranes: Entropic and enthalpic determinants of C60 aggregation and its effects on membrane properties", Desalination, 269(1), 111-119. https://doi.org/10.1016/j.desal.2010.10.049
- Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S. and Astinchap, B. (2011), "Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite", J. Membr. Sci., 375(1), 284-294. https://doi.org/10.1016/j.memsci.2011.03.055
- Wang, P., Tan, K., Kang, E. and Neoh, K. (2002), "Plasma-induced immobilization of poly (ethylene glycol) onto poly (vinylidene fluoride) microporous membrane", J. Membr. Sci., 195(1), 103-114. https://doi.org/10.1016/S0376-7388(01)00548-8
-
Wang, D., Teo, W. and Li, K. (2004), "Selective removal of trace
$H_{2}S$ from gas streams containing$CO_{2}$ using hollow fibre membrane modules/contractors", Sep. Purif. Technol., 35(2), 125-131. https://doi.org/10.1016/S1383-5866(03)00135-7 -
Wu, G., Gan, S., Cui, L. and Xu, Y. (2008), "Preparation and characterization of PES/
$TiO_{2}$ composite membranes", Appl. Surf. Sci., 254(21), 7080-7086. https://doi.org/10.1016/j.apsusc.2008.05.221 -
Yan, L., Li, Y.S., Xiang, C.B. and Xianda, S. (2006), "Effect of nano-sized
$Al_2O_3$ -particle addition on PVDF ultrafiltration membrane performance", J. Membr. Sci., 276(12), 162-167. https://doi.org/10.1016/j.memsci.2005.09.044 - Yang, X., Deng, B., Liu, Z., Shi, L., Bian, X., Yu, M., Li, L., Li, J. and Lu, X. (2010), "Microfiltration membranes prepared from acryl amide grafted poly (vinylidene fluoride) powder and their pH sensitive behaviour", J. Membr. Sci., 362(1), 298-305. https://doi.org/10.1016/j.memsci.2010.06.057
- Zhang, M., Nguyen, Q.T. and Ping, Z. (2009), "Hydrophilic modification of poly (vinylidene fluoride) microporous membrane", J. Membr. Sci., 327(1-2), 78-86. https://doi.org/10.1016/j.memsci.2008.11.020
- Zheng, Y.-M., Zou, S.-W., Nanayakkara, K.G.N., Matsuura, T. and Chen, J.P. (2011), "Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane", J. Membr. Sci., 374(1-2), 1-11. https://doi.org/10.1016/j.memsci.2011.02.034
피인용 문헌
- Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zerovalent iron or magnetite nanoparticles vol.8, pp.1, 2017, https://doi.org/10.12989/mwt.2017.8.1.051
- Fullerene Nanofiller Reinforced Epoxy Nanocomposites-Developments, Progress and Challenges vol.25, pp.3, 2015, https://doi.org/10.1080/14328917.2020.1748794