References
- A. Henglein and M. Giersig, "Formation of colloidal nanoparticles: capping action of citrate", J. Phys. Chem. B, 103, 9533 (1999). https://doi.org/10.1021/jp9925334
- V. Swarup, J. Ghosh, S. Ghosh, A. Saxena, and A. Basu, "Antiviral and anti-inflammatory of rosmarinic acid in an experimental murine model of Japanese encephalitis", Antimicrob. Agents Chemother., 51, 3367 (2007). https://doi.org/10.1128/AAC.00041-07
- C. Marambio-Jones and E. M. V. Hoek, "A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment", J. Nanopart. Res., 12, 1531 (2010). https://doi.org/10.1007/s11051-010-9900-y
-
J. Husheng, H. Wensheng, W. Liqiao, X. Bingshe, and L. Xuguang, "The structures and antibacterial properties of nano-
$SiO_2$ supported silver/zinc-silver materials", Dent. Mater., 24, 244 (2008). https://doi.org/10.1016/j.dental.2007.04.015 - M. Rai, A. Yadav, and A. Gade, "Silver nanoparticles as a new generation of antimicrobials", Biotechnol. Adv., 27, 76 (2009). https://doi.org/10.1016/j.biotechadv.2008.09.002
- D. R. Monterio, L. F. Gorup, A. S. Takamiya, A. C. Ruvollo-Filho, E. R. de Camarogo, and D. B. Barbosa, "The growing importance of materials that prevent microbial adhension: antimicrobial effect of medical devices containing silver", Int. J. Antimicrob. Agents., 34, 103 (2009). https://doi.org/10.1016/j.ijantimicag.2009.01.017
- P. Spacciapoli, D. Buxton, D. Rothstein, and P. Friden, "Antimicrobial activity of silver nitrate against periodontal pathogens", J. Periodont. Res., 36, 108 (2001). https://doi.org/10.1034/j.1600-0765.2001.360207.x
- I. S. Hwang, J. Cho, J. H. Hwang, B. Hwang, H. Choi, J. Lee, and D. G. Lee, "Antimicrobial effects and mechanism(s) of silver nanoparticle", Korean J. Microbiol. Biotechnol., 39, 1 (2011).
- J. H. Lee, H. J. Seo, T. W. Son, and H. S. Lim, "Preparation and properties of antimicrobial zinc alginate films according to solution concentration", Polym. Korea, 37, 677 (2013). https://doi.org/10.7317/pk.2013.37.6.677
- Z. X. Xin, Z. X. Zhang, K. Pal, J. U. Byeon, S. H. Lee, and J. K. Kim, "Study of microcellular injection-molded polypropylene/waste ground rubber tire powder blend", Mater. Des., 31, 589 (2010). https://doi.org/10.1016/j.matdes.2009.07.002
- D. Zampono, T. Ferreri, C. Puglisi, M. Mancuso, R. Zaccone, R. Scaffaro, and D. Bennardo, "PVC silver zeolite composites with antimicrobial properties", J. Mater. Sci., 46, 6734 (2011). https://doi.org/10.1007/s10853-011-5629-y
- J. Ji and W. Zhang, "Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds", J. Biomed. Mater. Res. Part A, 88, 448 (2008).
- O. Akhavan and E. Ghaderi, "Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner", Carbon, 50, 1853 (2012). https://doi.org/10.1016/j.carbon.2011.12.035
- O. Akhavan and E. Ghaderi, "Toxicity of graphene and graphene oxide nanowalls against bacteria", ACS Nano, 4, 5731 (2010). https://doi.org/10.1021/nn101390x
- T. Mondal, A. K. Bhowmick, and R. Krishnamoorti, "Chlorophenyl pendant decorated graphene sheet as a potential antimicrobial agent: synthesis and characterization", J. Mater. Chem., 22, 22481 (2012). https://doi.org/10.1039/c2jm33398h
-
O. Akhavan, R. Azimirad, S. Safa, and E. Hasani, "
$CuO/Cu(OH)_2$ hierarchical nanostructures as bactericidal photocatalysts", J. Mater. Chem., 21, 9634 (2011). https://doi.org/10.1039/c0jm04364h - J. Vartiainen, M. Ratto, and S. Paulussen, "Antimicrobial activity of glucose oxidase-immobilized plasma-activated polypropylene films", Packag. Technol. Sci., 18, 243 (2005). https://doi.org/10.1002/pts.695
- P. Daewon, W. Jun, and A. M. Klibanov, "One-step, paintinglike coating procedures to make surfaces highly and permanently bactericidal", Biotechnol. Prog., 22, 584 (2006). https://doi.org/10.1021/bp0503383
- B. Galeano, E. Korff, and W. L. Nicholson, "Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation", Appl. Environ. Microbiol., 69, 4329 (2003). https://doi.org/10.1128/AEM.69.7.4329-4331.2003
- M. M. Cowan, K. Z. Abshire, S. L. Houk, and S. M. Evans, "Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel", J. Ind. Microbiol. Biotechnol., 30, 102 (2003). https://doi.org/10.1007/s10295-002-0022-0
- G. Seyfriendsberger, K. Rametsteiner, and W. Kern, "Polyethylene compounds with antimicrobial surface properties", Eur. Polym. J., 42, 3383 (2006). https://doi.org/10.1016/j.eurpolymj.2006.07.026
- T. F. C. Mah and G. A. Toole, "Mechanisms of biofilm resistance to antimicrobial agents", Trends Microbiol., 9, 34 (2001). https://doi.org/10.1016/S0966-842X(00)01913-2
- D. Davies, "Understanding biofilm resistance to antimicrobial agents", Nat. Rev. Drug Discov., 2, 114 (2003). https://doi.org/10.1038/nrd1008
- G. Applerot, J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, and E. Banin, "Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress", Small, 8, 3326 (2012). https://doi.org/10.1002/smll.201200772