DOI QR코드

DOI QR Code

Studies on Mixed Micellizations of Sodium Dodecanoate and Sodium Octanoate by Means of Electric Conductivity and Light Scattering

전기 전도도 및 광산란법에 의한 나트륨 도데카노에이트와 나트륨 옥타노에이트의 혼합미셀화 연구

  • Park, Il Hyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology.) ;
  • Jang, Han Woong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology.) ;
  • Baek, Seung Hwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology.)
  • 박일현 (금오공과대학교 고분자공학과) ;
  • 장한웅 (금오공과대학교 고분자공학과) ;
  • 백승환 (금오공과대학교 고분자공학과)
  • Received : 2015.03.27
  • Accepted : 2015.05.19
  • Published : 2015.08.31

Abstract

The critical micelle concentration (CMC), the counter ion binding constant (B) and the aggregation number (N* ) for the mixed micellization of sodium dodecanoate and sodium n-octanoate as two anionic surfactants have been investigated by means of electric conductivity and light scattering. As its experimental results are found to be deviated from ideal mixed model, thus two different kinds of regular solution models such as Rubingh and Motomura are used for interpreting our experimental data. The stability of the mixed micelles has been confirmed from the negative values of the standard Gibbs energy of mixed micellization ΔGmicel,0 over all compositions and the measured values of ΔGmicel,0 agreed with the theoretical ones within the experimental error.

음이온성 계면활성제인 sodium dodecanoate과 sodium n-octanoate의 혼합미셀 물성인 임계미셀농도(CMC), 반대이온의 결합상수(B), 및 미셀형성 응집수(N*) 등을 여러 조성에서 전기전도도법과 광산란법으로 조사하였다. 여러 혼합조성에서의 혼합미셀 형성에 대한 실험 결과는 이상용액의 예측 거동과는 상당히 벗어났으므로, 정규용액 이론에 기반을 둔 Rubingh 모델과 Motomura 모델을 이용하여 분석하였다. 또 미셀 형성에 대한 표준 Gibbs 에너지 ΔGmicel,0는 전체 조성에서 음의 값이 얻어져 혼합미셀의 안정성을 확인할 수 있었으며, 이러한 ΔGmicel,0 측정값은 이론적 계산치와 실험 오차 내에서 일치하였다.

Keywords

References

  1. Holland, P. M.; Rubingh, D. N. Mixed Surfactant Systems(ACS Symposium Series 501); ACS: Washington, DC, 1992.
  2. Abe, M.; Scamehorn, J. F. Mixed Surfactant Systems; CRC Press: New York, 2004.
  3. Scamehorn, J. F. Phenomena in Mixed Surfactant Systems(ACS Symposium Series 311); ACS: Washington, DC, 1985.
  4. Yoshikawa, H. Adv. Drug Delivery Rev. 1997, 28, 239. https://doi.org/10.1016/S0169-409X(97)00075-6
  5. Morigaki, K.; Walde, P. Curr. Opin. Colloid Interface Sci. 2007, 12, 75. https://doi.org/10.1016/j.cocis.2007.05.005
  6. Junquera, E.; Aicart, E. Langmuir 2002, 18, 9250. https://doi.org/10.1021/la026121p
  7. Rodriguez-Pulido, A.; Casado, A.; Munoz-Ubeda, M.; Junquera, E.; Aicart, E. Langmuir 2010, 26, 9378. https://doi.org/10.1021/la100373r
  8. Lee, B. H. J. Kor. Chem. Soc. 2002, 46, 495. https://doi.org/10.5012/jkcs.2002.46.6.495
  9. Park, I. J.; Lee, B. H. J. Korea Chem. Soc. 2006, 50, 190. https://doi.org/10.5012/jkcs.2006.50.3.190
  10. Park, I. J.; Lee, B. H. J. Korea Chem. Soc. 2009, 53, 491. https://doi.org/10.5012/jkcs.2009.53.5.491
  11. Park, I. J.; Lee, B. H. J. Korea Chem. Soc. 2011, 55, 379. https://doi.org/10.5012/jkcs.2011.55.3.379
  12. Lee, N. M.; Lee, B. H. J. Korea Chem. Soc. 2012, 56, 556. https://doi.org/10.5012/jkcs.2012.56.5.556
  13. Campbell, A. N.; Lakshminarayanan, G. R. Can. J. Chem, 1965, 43, 1729. https://doi.org/10.1139/v65-228
  14. Zemb, T.; Drifford, M.; Hayoun, M.; Jehanno, A. J. Phy. Chem. 1983, 87, 4524. https://doi.org/10.1021/j100245a037
  15. Medoš, Ž.; Bešter-Rogač, M. J. Chem. Thermodynamics 2015, 83, 117. https://doi.org/10.1016/j.jct.2014.12.011
  16. de Moura, A. F.; Freitas, L. C. G. Chem. Phy. Lett. 2005, 411, 474. https://doi.org/10.1016/j.cplett.2005.05.039
  17. Shelly, J.; Watanabe, K.; Klein, M. L. Electrochim. Acta 1991, 36, 1729. https://doi.org/10.1016/0013-4686(91)85035-6
  18. Laaksonen, L.; Rosenholm, J. B. Chem. Phy. Lett. 1993, 216, 429. https://doi.org/10.1016/0009-2614(93)90122-H
  19. Tummino, P. J.; Gafni, A. Biophys. J. 1993, 64, 1580. https://doi.org/10.1016/S0006-3495(93)81528-5
  20. Martinez-Landeria, P.; Prieto, G.; Ruso, J. M.; Sarmiento, F. Colloids Surf. A 2002, 203, 67. https://doi.org/10.1016/S0927-7757(01)01068-8
  21. Motomura, K.; Yamanaka, M.; Aratono, M. Colloid Polym. Sci. 1984, 262, 948. https://doi.org/10.1007/BF01490027
  22. Huglin M. B. Light Scattering from Polymer Solutions; Academic Press: New York, 1972.
  23. Blanco, E.; Gonzalez-Perez, A.; Ruso, J. M.; Perido, R.; Prieto, G.; Sarmiento, F.; J. Colloid Interface Sci. 2005, 288, 247. https://doi.org/10.1016/j.jcis.2005.02.085
  24. Holland, P. M.; Rubingh, D. N. J. Phys. Chem. 1983, 87, 1984. https://doi.org/10.1021/j100234a030
  25. Rosen, M. J. Prog. Colloid Polym. Sci. 1994, 95, 39. https://doi.org/10.1007/BFb0115703
  26. Schulz, P. C.; Rodriguez, J. L.; Minardi, R. M.; Sierra, M. B.; Morini, M. A. J. Colloid Interface Sci. 2006, 303, 264. https://doi.org/10.1016/j.jcis.2006.07.012
  27. Berr, S. S.; Jones, R. R. M. J. Phys. Chem. 1989, 93, 2555. https://doi.org/10.1021/j100343a062
  28. Gruen, D. W. J. Phys. Chem. 1985, 89, 146. https://doi.org/10.1021/j100247a032
  29. Tanford, C. J. Phys. Chem. 1974, 78, 2469. https://doi.org/10.1021/j100617a012
  30. Shanks, P.C.; Franses, E. I. J. Phys. Chem. 1992, 96, 1794. https://doi.org/10.1021/j100183a055
  31. Puvvada, S.; Blankschtein, D. J. J. Phys. Chem. 1992, 96, 5567. https://doi.org/10.1021/j100192a070
  32. Puvvada, S.; Blankschtein, D. J. J. Phys. Chem. 1992, 96, 5579. https://doi.org/10.1021/j100192a071

Cited by

  1. Aggregation behavior of sodium 3-(octyloxy)-4-nitrobenzoate in aqueous solution pp.1369-9261, 2018, https://doi.org/10.1039/C8NJ03440K
  2. Highly Hydrophilic and Lipophilic Derivatives of Bile Salts vol.22, pp.13, 2015, https://doi.org/10.3390/ijms22136684