참고문헌
- Berzeri, M. and Shabana, A.A., 2000. Development of simple models for the elastic forces in the absolute nodal coordinate formulation. Journal of Sound and Vibration, 235(4), pp.539-565. https://doi.org/10.1006/jsvi.1999.2935
- Buckham, B., Nahon, M., Seto, M., Zhao, X. and Lambert, C., 2003. Dynamics and control of a towed underwater vehicle system, part I: model development. Ocean Engineering, 30(4), pp.453-470. https://doi.org/10.1016/S0029-8018(02)00029-X
- Choc, Y.I. and Casarella, M.J., 1971. Hydrodynamic resistance of towed cables. Journal of Hydronautics, 5(4), pp.126-131. https://doi.org/10.2514/3.62882
- Curado, T.F., Pedro, A.A. and Pascoal, A., 2010. Nonlinear adaptive control of an underwater towed vehicle. Ocean Engineering, 37(13), pp.1193-1220. https://doi.org/10.1016/j.oceaneng.2010.05.010
- Gerstmayr, J. and Shabana, A.A., 2006. Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dynamics, 45(1-2), pp.109-130. https://doi.org/10.1007/s11071-006-1856-1
- Gerstmayr, J., Sugiyama, H. and Mikkola, A., 2013. Review on the absolute nodal coordinate formulation for large deformation analysis of multi-body systems. Journal of Computational and Nonlinear Dynamics, 8(3), pp.031016. https://doi.org/10.1115/1.4023487
- Grosenbaugh, M.A., 2007. Transient behavior of towed cable systems during ship turning maneuvers. Ocean engineering, 34(11), pp.1532-1542. https://doi.org/10.1016/j.oceaneng.2007.01.002
- Huang, S., 1994. Dynamic analysis of three-dimensional marine cables. Ocean Engineering, 21(6), pp.587-605. https://doi.org/10.1016/0029-8018(94)90008-6
- Jun, B.H., Park, J.Y., Lee, F.Y., Lee, P.M., Lee, C.M. and Oh, J.H., 2009. Development of the AUV 'ISiMI' and a free running test in an Ocean Engineering Basin. Ocean engineering, 36(1), pp.2-14. https://doi.org/10.1016/j.oceaneng.2008.07.009
- Kamman, J.W. and Nguyen, T.C., 1990. Modeling towed cable system dynamics (No. NCSC-TM-492-88). Panama City, FL: Naval Coastal Systems Center.
- Kamman, J.W. and Huston, R.L., 2001. Multi-body dynamics modeling of variable length cable systems. Multi-body System Dynamics, 5(3), pp.211-221. https://doi.org/10.1023/A:1011489801339
- Kim, K.W., Lee, J.W. and Yoo, W.S., 2012. The motion and deformation rate of a flexible hose connected to a mother ship. Journal of mechanical science and technology, 26(3), pp.703-710. https://doi.org/10.1007/s12206-011-1202-5
- Park, H.I., Jung, D.H. and Koterayama, W., 2003. A numerical and experimental study on dynamics of a towed low tension cable. Applied Ocean Research, 25(5), pp.289-299. https://doi.org/10.1016/j.apor.2004.02.003
- Shabana, A.A. and Yakoub, R.Y., 2001. Three-dimensional absolute nodal coordinate formulation for beam elements: theory. Journal of Mechanical Design, 123(4), pp.606-613. https://doi.org/10.1115/1.1410100
- Shabana, A.A., Hussien, H.A. and Escalona, J.L., 1998. Application of the absolute nodal coordinate formulation to large rotation and large deformation problems. Journal of Mechanical Design, 120(2), pp.188-195. https://doi.org/10.1115/1.2826958
- Seo, D.C., 2009. A study on the underwater glider design based on stability analysis and motion behavior. Ph.D. Dissertation, Seoul National University.
- Takehara, S., Terumichi, Y. and Sogabe, K., 2011. Motion of a submerged tether subject to large deformations and displacements. Journal of System Design and Dynamics, 5(2), pp.296-305. https://doi.org/10.1299/jsdd.5.296
- Vaz, M.A. and Patel, M.H., 1995. Transient behaviour of towed marine cables in two dimensions. Applied Ocean Research, 17(3), pp.143-153. https://doi.org/10.1016/0141-1187(95)00012-7
- Wu, J. and Chwang, A.T., 2001. Investigation on a two-part underwater manoeuvrable towed system. Ocean Engineering, 28(8), pp.1079-1096. https://doi.org/10.1016/S0029-8018(00)00024-X
- Yakoub, R.Y. and Shabana, A.A., 1999. Use of Cholesky coordinates and the absolute nodal coordinate formulation in the computer simulation of flexible multi-body systems. Nonlinear Dynamics, 20(3), pp.267-282. https://doi.org/10.1023/A:1008323106689
- Yakoub, R.Y. and Shabana, A.A., 2001. Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. Journal of Mechanical Design, 123(4), pp.614-621. https://doi.org/10.1115/1.1410099
- Yuan, Z., Jin, L., Chi, W. and Tian, H., 2013. Finite difference method for solving the nonlinear dynamic equation of underwater towed system. International Journal of Computational Methods, 11(4), pp.1350060 https://doi.org/10.1142/S0219876213500606
피인용 문헌
- CFD를 이용한 수중 예인체의 유체력 미계수 결정과 6자유도 운동해석 vol.53, pp.4, 2015, https://doi.org/10.3744/snak.2016.53.4.315
- 케이블-수중 예인체 시스템의 3차원 비선형 완전 연성해석 vol.30, pp.6, 2016, https://doi.org/10.5574/ksoe.2016.30.6.458
- 해상상태를 고려한 수중예인체 진회수시스템 설계 및 실험 vol.21, pp.4, 2015, https://doi.org/10.12673/jant.2017.21.4.332
- Dynamic modeling of an underwater moored platform equipped with a hydrokinetic energy turbine vol.10, pp.2, 2015, https://doi.org/10.1177/1687814017754158
- Application of systems approach at early stages of designinng unmanned towed underwater systems for shallow water areas vol.101, pp.5, 2015, https://doi.org/10.15587/1729-4061.2019.179486
- Dynamic Effect Research of Cable-Lead-In Rod on Towed System vol.24, pp.6, 2015, https://doi.org/10.1007/s12204-019-2135-x
- Development of deep sea ARV cables physical characteristics vol.461, pp.None, 2015, https://doi.org/10.1088/1755-1315/461/1/012018
- Dynamic Modeling of Underwater Multi-Hull Vehicles vol.38, pp.9, 2015, https://doi.org/10.1017/s0263574719001693
- Feasible Positions of Towing Point and Center of Gravity for Towfish Attitude Control vol.34, pp.5, 2020, https://doi.org/10.26748/ksoe.2020.022
- Towfish Attitude Control: A Consideration of Towing Point, Center of Gravity, and Towing Speed vol.9, pp.6, 2021, https://doi.org/10.3390/jmse9060641
- Numerical Simulation of Depth Tracking Control of an Underwater Towed System Coupled with Wave-Ship Interference vol.9, pp.8, 2021, https://doi.org/10.3390/jmse9080874