참고문헌
- Butterfield, S., Musial, W., Jonkman, J. and Sclavounos, P., 2007. Engineering challenges for floating wind Turbines. Report number NREL/CP-500-38776. Colorado: National Renewable Energy Laboratory (NREL).
- Dodaran, A.A. and Park, S.K., 2012. Development of design static property analysis of mooring system caisson for offshore floating wind turbine. International Journal of Ocean System Engineering, 2(2), pp.97-105. https://doi.org/10.5574/IJOSE.2012.2.2.097
- Goupee, A.J., Koo, B.J., Lambrakos, K.F. and Kimball, R.W., 2012. Model tests for three floating wind turbine concepts. Proceedings of Offshore Technology Conference, Houston, TX, USA, 30 April - 3 May 2012, pp.OTC 23470.
- IEA, 2012. World energy outlook 2012 - Renewable energy outlook (Chapter 7). Paris: International Energy Agency.
- Jensen, J., Olsen, A. and Mansour, A., 2011. Extreme wave and wind response predictions. Ocean Engineering, 38(17-18), pp.2244-2253. https://doi.org/10.1016/j.oceaneng.2011.10.003
- Jonkman, J., 2009. Dynamics of offshore floating wind turbines-model development and verification. Wind Energy, 12, pp.459-492. https://doi.org/10.1002/we.347
- Jonkman, J., 2010. Definition of the floating system for phase IV of OC3, report number NREL/TP-500-47535. Colorado: National Renewable Energy Laboratory (NREL).
- Jonkman, J. and Musial, W., 2010. Offshore code comparison collaboration (OC3) for IEA task 23 offshore wind technology and development, report number NREL/TP-5000-48191. Colorado: National Renewable Energy Laboratory (NREL).
- Karimirad, M., Meissonnier, Q., Gao, Z. and Moan, T., 2011. Hydro elastic code-to-code comparison for a tension leg SPAR-type floating wind turbine. Marine Structures, 24(4), pp.412-435. https://doi.org/10.1016/j.marstruc.2011.05.006
- Lee, S.H., 2008. Dynamic response analysis of spar buoy floating wind turbine systems. Ph.D. Thesis. MIT.
- Mostafa, N., Murai, M., Nishimura, R., Fujita, O. and Nihei, Y., 2012. Study of motion of SPAR-Type floating wind turbines in waves with effect of gyro moment at inclination. Journal of Naval Architecture and Marine Engineering, 9, pp.67-79.
- Neville, A., 2009. Hywind floating wind turbine, North Sea, Norway. Power, 153(12), pp.40-43.
- Newman, J.N., 1977. Marine Hydrodynamics. Cambridge: The MIT Press.
- Nielsen, F.G., Hanson, T.D. and Skaare, B., 2006. Integrated dynamic analysis of floating offshore wind turbines. Proceedings of OMAE 2006 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, 4-9 June 2006, pp.671-679.
- Patel, M.H., 1989. Dynamics of offshore structures. London: Butterworths.
- Rodier, D., Carmelli, C., Aubault, A. and Weinstin, A., 2010. WindFloat: A floating foundation for offshore wind turbines. Journal of Renewable and Sustainable Energy, 2, pp.033104 https://doi.org/10.1063/1.3435339
- Sheng, J.D., 2009. Status, plans and technologies for offshore wind turbines in Europe and North America. Renewable Energy, 34, pp.646-654. https://doi.org/10.1016/j.renene.2008.05.040
- Shin, H., Dam, P.T., Jung, K.J., Song, J., Rim, C. and Chung, T., 2013. Model test of new floating offshore wind turbine platforms. International Journal of Naval Architecture and Ocean Engineering, 5(2), pp.199-209. https://doi.org/10.3744/JNAOE.2013.5.2.199
- Shin, H., Cho, S. and Jung, K., 2014. Model test of an inverted conical cylinder floating offshore wind turbine moored by a spring-tensioned-leg. International Journal of Naval Architecture and Ocean Engineering, 6(1), pp.1-13. https://doi.org/10.2478/IJNAOE-2013-0159
- Utsunomiya, T., Matsukuma, H., Minoura, S., Ko, K., Hamamura, H., Kobayashi, O., Sato, I., Nomoto, Y. and Yasui, K., 2013. At sea experiment of a hybrid Spar for floating offshore wind turbine using 1/10 scale model. Journal of Offshore Mechanics and Arctic Engineering, 135, pp.034503. https://doi.org/10.1115/1.4024148
- Wang, L. and Sweetman, B., 2012. Simulation of large -amplitude motion of floating wind turbines using conservation of momentum. Ocean Engineering, 42, pp.155-164. https://doi.org/10.1016/j.oceaneng.2011.12.004
피인용 문헌
- 밸러스트 수 이동으로 태양을 추적하는 부유식 태양광 발전시스템 개발 vol.53, pp.4, 2015, https://doi.org/10.3744/snak.2016.53.4.290
- Experimental Investigation of the Motion Responses of a Moored Twin-Barge Model in Regular Waves in a Square Tank vol.42, pp.2, 2015, https://doi.org/10.5394/kinpr.2018.42.2.127
- Study of Floating Wind Turbine with Modified Tension Leg Platform Placed in Regular Waves vol.12, pp.4, 2019, https://doi.org/10.3390/en12040703
- Hydrodynamics of the wind float OC3-Hywind with mooring loads estimated by the modular system vol.24, pp.1, 2019, https://doi.org/10.1007/s00773-018-0549-z
- Dynamic Response for a Submerged Floating Offshore Wind Turbine with Different Mooring Configurations vol.7, pp.4, 2015, https://doi.org/10.3390/jmse7040115
- Proposal of a Novel Semi-Submersible Floating Wind Turbine Platform Composed of Inclined Columns and Multi-Segmented Mooring Lines vol.12, pp.9, 2015, https://doi.org/10.3390/en12091809
- Design Optimization and Coupled Dynamics Analysis of an Offshore Wind Turbine with a Single Swivel Connected Tether vol.13, pp.14, 2015, https://doi.org/10.3390/en13143526
- Scaling strategies for multi-purpose floating structures physical modeling: state of art and new perspectives vol.108, pp.None, 2015, https://doi.org/10.1016/j.apor.2020.102487
- Optimization study of a catenary mooring system for a spar floating wind turbine based on its hydrodynamic responses vol.235, pp.2, 2015, https://doi.org/10.1177/1475090220917812
- The nonlinear wave and current effects on fixed and floating bodies by a three-dimensional fully-nonlinear numerical wave tank vol.245, pp.None, 2022, https://doi.org/10.1016/j.oceaneng.2021.110458