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Recently, scheduling problems with position-dependent processing times have received considerable attention in the literature, 
where the processing times of jobs are dependent on the processing sequences. However, they did not consider cases in which 
each processed job has different learning or aging ratios. This means that the actual processing time for a job can be determined 
not only by the processing sequence, but also by the learning/aging ratio, which can reflect the degree of processing difficulties 
in subsequent jobs. Motivated by these remarks, in this paper, we consider a two-agent single-machine scheduling problem with 
linear job-dependent position-based learning effects, where two agents compete to use a common single machine and each job 
has a different learning ratio. Specifically, we take into account two different objective functions for two agents: one agent minimizes 
the total weighted completion time, and the other restricts the makespan to less than an upper bound. After formally defining 
the problem by developing a mixed integer non-linear programming formulation, we devise a branch-and-bound (B&B) algorithm 
to give optimal solutions by developing four dominance properties based on a pairwise interchange comparison and four properties 
regarding the feasibility of a considered sequence. We suggest a lower bound to speed up the search procedure in the B&B 
algorithm by fathoming any non-prominent nodes. As this problem is at least NP-hard, we suggest efficient genetic algorithms 
using different methods to generate the initial population and two crossover operations. Computational results show that the proposed 
algorithms are efficient to obtain near-optimal solutions.

Keywords：Two-Agent Single-Machine Scheduling, Job-Dependent Position-Based Processing Time, Total Weighted Completion 
Time, Makespan, Branch-and-Bound Algorithm, Genetic Algorithm

1. Introduction1)

In this paper, we consider a scheduling problem in which 
two agents compete to use a common single machine, and each 
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agent has different performance objectives when processing 
a set of jobs. The processing order of one job belonging to 
one agent can affect the objective function of the other agent. 
Therefore, we need to find a schedule that optimizes two 
objective functions at the same time by considering the impact 
of scheduled jobs on the objective functions of two agents.

This scenario is called a two-agent scheduling problem, 
and requires special attention. If we handle this problem as 
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a simple bi-criteria, single-agent optimization problem, we 
could use one of two general approaches : (i) represent the 
objective function as the weighted sum of two objective functions, 
or (ii) consider two objective functions one-by-one, using 
the first result as a new constraint for the second. However, 
neither of these methods can guarantee the optimality of the 
obtained solution, as the two objective functions might have 
different measurement units, and all jobs contribute to all 
criteria [2]. Therefore, two-agent scheduling problems are diffe-
rent from those commonly referred to as bi-criteria scheduling 
problems. The complexity of two-agent scheduling problems 
is higher than that of bi-criteria scheduling problems, and 
we need to devise more efficient and systematic approaches.

Two-agent scheduling problems occur in various industrial 
environments where two agents interact to perform their re-
spective tasks using a common processing resource. For exam-
ple, let us consider a project scheduling problem in a firm. 
As explained in [15], over time, multiple projects within a 
factory might compete to use shared common renewable re-
sources, such as people and machinery. Each project manager 
is responsible for achieving good performance on his or her 
project, and so the use of these resources must be negotiated 
with other project managers. Another example can be found 
when tasks in a mechanical workshop require rescheduling 
[26]. If the main objective is to minimize the total flow time, 
some jobs that have not been done on one day become urgent 
the next. Two groups of jobs can then be assigned to two 
agents with different objective functions. 

In recent decades, there have been a number of studies 
on this issue. First, the concept of two-agent scheduling prob-
lems was introduced by [4], which analyzed the computa-
tional complexity of combining two criteria into a single ob-
jective function. Then, Agnetis et al. [1] addressed the two-
agent scheduling problem by considering the makespan, late-
ness, sum of completion times, and sum of weighted com-
pletion times, and analyzed the problem complexity while 
suggesting some solution algorithms. Ng et al. [25] consid-
ered the case whereby one agent minimizes the sum of com-
pletion times, while restricting the number of tardy jobs with-
in a bound for the other agent, and showed that this problem 
is NP-hard under the condition of high multiplicity. Cheng 
et al. [9] extended the work of Agnetis et al. [1] to multi- 
agent scheduling problems. Readers who are interested in 
this topic are referred to [11, 18, 32], and the references therein.

The above studies did not consider cases in which the 
job processing time depends on the position (or start time) 
of a job within the overall sequence. We call this the posi-

tion-dependent processing time. In the literature, this process-
ing time is categorized as having a learning effect or an aging 
effect. With a learning effect, the actual processing time of 
a job decreases according to its position in the sequence. 
For example, repeated processing of similar tasks improves 
workers’ skills, increasing the speed of machine operation. 
With an aging effect, the actual processing time of a job 
increases with its position in the sequence. As a practical 
example, we can consider the continuous casting and rolling 
processes in a steel plant, where the hot and cold charge 
process can be regarded as two agents - the processing time 
of the charges will increase with time due to the drop in 
temperature [20]. 

Recently, scheduling problems with position-dependent pro-
cessing times have received considerable attention in the li-
terature. Specifically, Biskup [5] introduced the concept of 
the learning effect into scheduling problems for a single 
agent. Mosheiov [24] mentioned the aging effect, and showed 
that a V-shaped schedule is optimal for the single-machine 
flowtime minimization problem [23]. Biskup [6] provided 
an extensive survey on scheduling problems with learning 
effects, and Kuo and Yang [16] considered a single-machine 
scheduling problem with a cyclic aging effect. Chang et al. 
[7] studied the learning/aging effect scheduling problem on 
a single machine with a common due date. For more recent 
results, see [30, 27, 33]. 

To the best of our knowledge, few studies on scheduling 
problems have simultaneously considered two-agent and posi-
tion (or start time)-dependent processing times. These studies 
can be categorized by the functional representation method 
they use to compute the actual processing times : (i) linear 
function-based approaches (e.g., [20, 21, 17, 31]), and (ii) 
exponential function-based approaches (e.g., [10, 19, 29]). 
The above studies considered different combinations of ob-
jective functions, such as the (weighted) sum of completion 
times, (weighted) sum of tardiness, or lateness for one agent, 
under a constraint on the number of tardy jobs or the upper 
bound of the makespan for the other agent.

However, they did not consider cases in which each proc-
essed job has different learning or aging ratios. This means 
that the actual processing time for a job can be determined 
not only by the processing sequence, but also by the learn-
ing/aging ratio, which can reflect the degree of processing 
difficulties in subsequent jobs. This modeling concept for 
the processing time was first suggested by Cheng and Wang 
[8]. Later, Bachman and Janiak [3] analyzed a simpler learn-
ing effect formulation for a single-machine case, and Wang 
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and Xia [28] applied the concept to multiple-machine flow-
shop scheduling with an increasing series of dominating 
machines. These are plausible scenarios in real-life schedul-
ing environments, and hence they deserve to be applied to 
the case of two-agent single-machine scheduling.

Thus, in this paper, we consider a two-agent single-ma-
chine scheduling problem with linear job-dependent posi-
tion-based learning effects, where each job has a different 
learning ratio. Specifically, we take into account two ob-
jective functions such that one agent wants to minimize the 
total weighted completion time and the other agent wishes 
to restrict the makespan to within some upper bound. We 
formally define the problem by developing a mathematical 
formulation, and devise a branch-and-bound (B&B) algo-
rithm to give optimal solutions. As this problem is at least 
binary NP-hard, we suggest efficient genetic algorithms (GAs) 
using different methods to generate the initial population and 
two crossover operations to find near-optimal solutions, and 
verify their performance by means of a numerical experiment. 

The rest of this paper is organized as follows. In Section 
2, we formally define the two-agent single-machine schedul-
ing problem with linear job-dependent position-based learn-
ing effects by developing an appropriate mixed integer pro-
gramming (MIP) model and design a B&B algorithm to find 
optimal solutions. In Section 3, we develop efficient GAs 
that give near-optimal solutions and verify the performance 
of these algorithms using a numerical experiment in Section 
4. Finally we give our conclusions and suggestions for future 
work in Section 5.

2. Problem Definition and a Branch-
and-Bound Algorithm

2.1 Problem Definition

The scheduling problem considered can be described as 
follows : Consider two agents  and  , each with a set 
of non-preemptive  jobs    ⋯ 

 , where 


 represents the th job of agent , for ∈. Any 

of these jobs can be processed at the beginning of the oper-
ation, and each of them is processed by a single common 
machine. Therefore, the two agents compete to use the ma-
chine while optimizing their own objective functions, which 
are dependent on the completion times of all jobs. Specifi-
cally, we assume that agent  is aiming to minimize the 

sum of the weighted completion times of all jobs in , 

represented by 







, and that agent   must ensure that 

the makespan   is less than a given upper bound , 

where  and  are the weight and the completion time 
of job , respectively, for     ⋯ . 

Based on this problem description, we consider a special 
model for processing times that are position-dependent linear 
functions with job-dependent learning effects. Thus, for 
agent ∈ , the actual processing time of job  proc-

essed in th position in a sequence, represented by  , 
has a learning effect of    , where  is the 
normal processing time of job  and    is the constant 

learning ratio of job , for ∈   ⋯  and 
∈    ⋯  . Different schedules may 

therefore give different values 







 and   for the 

two agents. Specifically, for a schedule  , we represent these as 









  and   , where    can be computed 

as   


∈  using   to represent the com-

pletion time of  ∈  . Furthermore, because all process-
ing times are positive, we assume that


  




∀
 ∈ ∈.

Using the three-field notation , suggested by [12], 
we can denote the scheduling problem as

 
  

 
 

  
 











  
 ≤

       (1)

where the first component  is the number of machines, 
 describes the job characteristics, and  contains the ob-
jective functions. Therefore, Eq. 1 represents the two-agent 
single-machine scheduling problem with linear job-depend-
ent position-based learning effects. 

Furthermore, by defining

 









   ≤ ≤ 


     ≤ ≤ 
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we can develop the following MIP model for the problem 
under consideration :

  





 (2)



 














    ≤ ≤ 






     ≤ ≤ 
(3)

    









    ⋯  (4)

    




    ⋯  (5)

    ≤    ⋯  (6)

   




      ⋯  (7)

   




     ⋯  (8)

    ≥     ⋯  (9)

    ≥    ⋯  (10)

   ∈     ⋯    ⋯  (11)

where   is defined as    if job  is assigned to the 
th position and   , otherwise.  is the completion time 
of job ,  is the processing time of job , and  is 
the completion time of the job in position . Eq. 2 therefore 
represents the total weighted completion time of agent , 
which is the objective function of this agent, and Eq. 3 denotes 
the position-dependent processing time of job  under consid-
eration of learning effects. Eq. 4 computes the completion 
time of the th job, and the completion time of job  can 
be obtained by using this in Eq. 5. Eq. 6 is the upper-bound 
makespan condition for agent  . Eqs. 7 and 8 are job assign-
ment conditions: each job must be assigned to only one posi-
tion, and each position can have only one job. Eqs. 9 and 
10 are non-negativity conditions for variables  and , 
and Eq. 11 is the binary condition for variable  .

Agnetis et al. [1] showed that a two-agent single-machine 

scheduling problem  
 






  
  is binary NP-hard, even 

without job learning or aging effects. Therefore, our problem 
is at least binary NP-hard, necessitating the development of 
an efficient solution procedure to find a (near-) optimal solu-
tion.

2.2 Properties for Dominance and Feasibility

First, we develop four dominance properties based on a 
pairwise interchange comparison. Suppose that there are two 
sequences        and       , 
where  and  represent the scheduled and unscheduled 
parts, respectively. In , two jobs  and  are in the 
th and  th positions, respectively, whereas  is ob-
tained by interchanging  and  in . Then, by defining 
 as the completion time of sequence , we have the follow-
ing properties.

(Property 1)
If two jobs 

 
∈   satisfy (i)    and (ii) 




 ≤  ,  then  dominates .

Proof : From the definition, we can compute the completion 
times of  and  for schedules  and  as 
follows.

    
   

    

   

    

From   , we have    . Since  ≤ 

 , we have   
≤





 . Therefore,  can have a smaller 

total weighted completion time for agent  and a faster makespan 
for agent   than . This means that  dominates . ■

Three further properties can be proved in a similar manner 
to Property 1.

(Property 2) 
Given two jobs  ∈ , if (i)     and (ii)  


 ≤, then  dominates .

(Property 3) 
Given two jobs ∈ ∈ , if (i)     (ii)  

 ≥  and (iii)   ≤, then  

dominates .

(Property 4) 
Given two jobs ∈ ∈, if (i)    (ii) 


 ≥  and (iii)  ≤,  then  dominates .
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Additionally, we can state the following four properties 
regarding the feasibility of a sequence. Suppose that we have 
a sequence of jobs   , where the scheduled part   con-
sists of   jobs and the unscheduled part  consists of 
  jobs. Furthermore, let   be the minimum 
actual processing time of jobs that can be scheduled in the 
th position in , which is position   in the whole 
sequence.

(Property 5) 
Given a job ∈∩  scheduled in the  th position with 

  , then    is infeasible.

Proof : Since job ∈∩  in the  th position has   
, it violates the condition for agent  . ■

(Property 6) 
Given a job ∈∩  scheduled in the  th position with 

   and a job ∈∩, then    cannot gene-
rate any feasible sequence.

Proof : Since job ∈∩  and  , the completion 

time of any job ∈∩ must be greater than 
. Therefore, any sequence generated from    
is not feasible.  ■

(Property 7) 
Given a job ∈∩,  ≤, and  
, then    cannot generate any feasible sequence.

Proof : By the definition of  , we have   
for any job ∈∩ and any position 
  in . Therefore, we have  for any job 

∈∩, making any schedule generated from 
   infeasible. ■

(Property 8) 
If all jobs in  belong to agent  , then sequence    
should be   , where   is the sequence obtained by sche-
duling jobs in  in non-decreasing order of  .

Proof : Since all jobs in  belong to agent  , we have 
a scheduling problem with   jobs for agent 
 , represented by  


  

 


 .          (12)

According to Bachman and Janiak [3], this problem can 
be optimized by scheduling jobs in non-decreasing order of 

 . ■

2.3 Branch-and-Bound Algorithm

Using the properties stated above, we now develop an effi-
cient B&B algorithm. The algorithm attempts to assign jobs 
in a forward manner, i.e., iteratively from the first position. 
The basic idea is to branch a node into several nodes, each 
corresponding to the scheduling of one job among all possi-
ble jobs, and to bound each of them by computing the poten-
tial minimum value (i.e., lower bound) of the total weighted 
completion time of agent  for the schedule under consid-
eration [14]. For each node, we perform the following pro-
cess.

At each iteration of the algorithm, suppose that we have 
a sequence of jobs     , where the unscheduled part 
 comprises  jobs for agent  and  jobs for agent 
 . Then, we have

      ≥ 

            ≥  




 (13)

where    is the actual processing time of the 
th job. Therefore, we can use Eq. 13 as the estimator of 
    , represented by

  






We can also sort the weights of the unscheduled  jobs 
into non-increasing order, as  ≥ ≥⋯≥

 . Then, 

the lower bound of 







  can be computed as fol-

lows.

(Lemma 1) 

For schedule   with   , the lower bound of 







  

at the current iteration is

  


 


 

 





 

 ,        (14)
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where   and   represent the weight and completion time 
of the job scheduled in th position among all    
jobs for agent  in  , respectively. Furthermore,   de-
notes the minimum completion time of a job scheduled in 
th position among all  jobs for agent  in .

Proof : The first term in Eq. 14 computes the total weighted 
completion time of    scheduled jobs for 

agent  in  . According to [13], 




  is mini-

mized if the two sequences of numbers   and   
are monotonic in the opposite sense. Based on this, 
the minimum value of the total weighted completion 
time that can be achieved using the unscheduled  

jobs for agent  in  is 





 

 , which gives 

the second term in Eq. 14, resulting in a lower bound 
  for  . ■

Specifically, we can compute  by assigning the esti-

mated completion times      ⋯    to the 
remaining    jobs for agents  and   as follows :

∙Step 1 : Set      and   .
∙Step 2 : If ≥  , or  , or   , go to Step 8.
∙Step 3 : If  ≤  and   , set   

  , update  as  , and go 
to Step 7. Otherwise, go to Step 4.

∙Step 4 : If  , set  ,   and go 
to Step 5. Otherwise, go to Step 6.

∙Step 5 : If   , update  as  . Go to Step 7.
∙Step 6 : If   , set   and   .
∙Step 7 : Set    and go to Step 2.
∙Step 8 : We have   for    ⋯ .

Since the lower bound gives the minimum value of the 
total weighted completion time for agent  that can be ach-
ieved after finishing the allocation procedure, it can be used 
to speed up the search procedure in the B&B algorithm by 
fathoming any non-prominent nodes. We apply a depth-first 
search to the B&B algorithm, the overall procedure of which 
can be described as follows.

∙Initialization : Set ∞ and the current level   . 
Apply the bounding step and fathoming step described be-

low to the whole problem. If it is not fathomed, consider 
this as the one remaining subproblem for the iteration 
below.
∙Steps for each iteration :

1. branching : If there are no remaining subproblems at 
the current level  , set ← and go to the opti-
mality test step. Otherwise, choose the subproblem with 
the best lower bound   among those remaining at 
the current level  . If more than one subproblem have 
the lowest value of  , select one at random. Branch 
from the node to create new subproblems as follows:

  (a) If all remaining jobs belong to agent  , then apply 
Property 8 to generate one subproblem correspond-
ing to the scheduling of all remaining jobs for agent  .

  (b) Otherwise, create subproblems corresponding to the 
case of scheduling one remaining, non-dominated 
(by Properties 1 to 4 ), and feasible (by Properties 
5 to 7) job in the  th position, where   is 
the last position of the scheduled part for the se-
lected node.

  (c) For each new subproblem, update the set of schedu-
led jobs and unscheduled jobs for agents  and  .

2. bounding : For each new subproblem, compute  
and   using Eq. 14.

3. Fathoming : For each new subproblem, apply the fol-
lowing two fathoming tests. A subproblem with a se-
quence of jobs    is fathomed if

  (a) Test 1 :  , or
  (b) Test 2 : There are no remaining jobs to be scheduled 

(If  , this becomes the new value 
of , and Test 1 is reapplied to all un-
fathomed subproblems with this new ).

  (c) Set  ←.
∙Optimality test : Stop and accept the current solution as 

optimal if there are no remaining subproblems or if   . 
Otherwise, perform another iteration.

3. An Efficient GA

It is well known that B&B algorithms require considerable 
computational time to find optimal solutions to large-sized 
or computationally difficult problems. Therefore, we develop 
a GA Mitchell [22], a well-known meta-heuristic approach 
that can find near-optimal solutions efficiently. The compo-
nents of the suggested GA are as follows. 
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∙Design of a chromosome : First, we design a chromosome 
 as an -dimensional array representing a sequence of 
 jobs for two agents. Each gene represents the job num-
ber, and its position in the chromosome corresponds to 
the order of the jobs in a schedule. Then, we can make 
the following statement on the validity of the suggested 
structure for a chromosome.

(Property 9) Feasibility condition for a chromosome
A chromosome is valid and feasible as a sequence for the 
scheduling problem under consideration if all jobs repre-
sented by genes satisfy the following two conditions : (i) 
job numbers are not duplicated, and (ii) the makespan for 
agent   satisfies the upper-bound condition.

∙Initialization of a population : We consider three methods 
of generating a chromosome to initialize a population :
1.  : Arrange the jobs for agent   in non-decreasing 

order of  , then schedule the jobs for agent  
in order of shortest normal processing time.

2.  : Schedule the jobs for agent   in non-decreasing 
order of  , then arrange the jobs for agent  
in order of weighted shortest normal processing 
time.

3.  : Create a chromosome at random. If it does not 
satisfy Property 9, regenerate it.

We make  chromosomes for the initial population, where 
 is an even number. During the GA procedure, we allow 
a modest number of duplications, and set × to in-
crease the diversity of the chromosomes.

∙Fitness cost function : We use the total weighted com-
pletion time of jobs for agent   as the fitness cost.
∙Parent selection : Chromosomes in the population are sort-

ed in ascending order of fitness cost, and are then paired, 
starting from those with the smallest fitness cost. Each 
pair generates two offspring by applying the following re-
production process.
∙Reproduction : Reproduction generates offspring that have 

the parents’ characteristics. First, we use a crossover opera-
tion, exchanging some parts of two chromosomes. Specifi-
cally, we consider two kinds of crossover operation : (i) 
 : one-point crossover, and (ii)  : two-point cross-
over. However, in general, any crossover operation applied 
to a scheduling problem encounters a feasibility issue in 

the resulting chromosome, where there might be some du-
plicated genes. Therefore, we design a special method that 
guarantees the feasibility of the resulting chromosome. 
Suppose that we have two parents  and . One-point (two-
point) crossover randomly selects one point (two points) 
on , and reorders the genes between the selected first 
gene and the last (second) gene according to the sequence 
in , producing a new offspring . If the offspring is 
not feasible, we reapply this procedure. Similarly, we can 
generate another offspring . For each pair of chromo-
somes, we apply this operation probabilistically according 
to some pre-specified crossover rate      . Other-
wise, we generate two offspring as   and  . 

Moreover, we apply a mutation operation to each chromo-
some by swapping two randomly selected genes. This oper-
ation is useful in escaping from local optima, and is applied 
probabilistically according to some pre-specified rate 
    . If the resulting chromosome is not feasible under 
Property 9, we repeat the procedure.

∙Reconstruction of a population : By applying the repro-
duction procedure to each pair of chromosomes, we can 
generate  offspring. After evaluating the fitness cost of 
all offspring, we have a total of × chromosomes. Then, 
we can select the best  chromosomes to reconstruct a 
new population of the same size.
∙Termination condition : We terminate the GA if one of 

the following conditions is satisfied : (i) the maximum 
number of iterations has been reached, or (ii) there is no 
improvement in the solution for a fixed number of consec-
utive iterations.
∙Overall procedure of the suggested GA : The overall pro-

cedure of the suggested GA consists of three parts:
1. Initialization : Initialize the GA parameters such as the 

crossover probability , mutation probability , and 
termination conditions. Start with an initial population 
of size  ×, and evaluate the fitness cost for 
each member of the population. Sort chromosomes in 
ascending order of fitness, and identify that which has 
the minimum cost in the current population. 

2. Iteration procedure : Pair up the chromosomes in order 
of fitness cost values, from smallest to largest, and ap-
ply the reproduction procedure. Evaluate the fitness 
costs of the generated offspring. Select the best  chro-
mosomes among the newly generated members and the 
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current population, and form a new population for the 
next generation. Sort the population in ascending order 
of fitness cost values, and identify the solution with 
the minimum fitness cost.

3. Stooping rule : The GA stops with the best trial solution 
found so far when a fixed number of consecutive iter-
ations do not result in any improvement. Otherwise, the 
procedure is repeated for the next generation.

4. Numerical Experiments

4.1 Experimental Design

To verify the performance of the GA described in the pre-
vious section, we designed a numerical experiment. First, 
we considered different scheduling problems by changing the 
number of jobs for each agent. Specifically, we considered 
    , assuming that each agent has the same 
number of jobs. The value of  for agent   was generated 
using the convex combination of the minimum value of the 
makespan and the minimum value of the maximum make-
span, represented by  and , respectively. The value of 
 can be obtained by solving the single-agent scheduling 
problem in Eq. 12.  can be computed by the following 
lemma.

(Lemma 2) 
Let 




  denote the makespan of a schedule   with   

in the last position. Then, we have





 










 


≠









 

≠ 




 



   

and  


∈ , 

where   , if ≤ ≤  and   
 , if ≤ ≤ 

 , 

Proof : For any schedule  ′  obtained from schedule   by 
removing  , we have 





 


 ′   ′ 

 










 


≠






 

≠ 




 









 











 


≠









 

≠ 




 



  

where   ′   is the makespan of the remaining   
jobs using schedule  ′ . Furthermore, we can compute 

 

≠ 




 



  by arranging the remaining jobs in non-

increasing order of  and  . ■
Now, we can obtain different values of  by defining

,            (15)

where we consider the three different values of   0.25, 
0.5 and 0.75. Therefore, we have 12 system configurations 
defined by different pairs of   . For each configuration, 
we produced 50 problem instances by randomly generating 
normal processing times in the range 1-100, learning effects 
in the range 1-100, and job weights in the range 1-100. Ac-
cordingly, we considered 4×3×50 = 600 problem instances. 

Moreover, we considered three methods of generating the 
initial population and two different reproduction operations. 
Hence, we have 3×2 = 6 different GAs, represented by  
           . We determined the param-
eter values of these GAs by pretesting some randomly gen-
erated problem instances. As a result, we set   0.8,  

0.1, and applied the stopping condition if the GA went 30 
iterations without any improvement. Each instance of the 
scheduling problem was solved using the B&B algorithm and 
the six GAs. 

The performance of the GAs was evaluated in terms of 
the percentage error, which is defined as 


  

× 

where   is the total weighted completion time. Fur-
thermore, we measured the number of generated nodes and 
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  Value of

                  

Nodes CPU time
% 

error
CPU 
time

% 
error

CPU 
time

% 
error

CPU 
time

% 
error

CPU 
time

% 
error

CPU 
time

% 
error

CPU 
time

10

0.25
min

stdev
max

3584.720
11098.810
77781.000

1.018
2.958

20.545

0.096
0.291
1.329

0.783
0.116
1.201

0.113
0.302
1.654

0.770
0.099
0.967

0.137 
0.398 
1.986 

0.767 
0.107 
1.045 

0.192 
0.591 
3.290 

0.783 
0.098 
1.046 

0.038 
0.147 
0.861 

0.581 
0.099 
0.843 

0.059 
0.264 
1.627 

0.582 
0.099 
0.905 

0.50
min

stdev
max

6748.140
9815.683

58041.000

2.134
3.227

19.563

0.220
0.671
3.382

0.763
0.100
1.107

0.048
0.211
1.072

0.764
0.101
1.139

0.231 
0.933 
5.242 

0.773 
0.102 
1.045 

0.111 
0.575 
4.030 

0.755 
0.081 
0.967 

0.280 
0.980 
4.896 

0.609 
0.092 
0.858 

0.040 
0.165 
1.072 

0.599 
0.089 
0.827 

0.75
min

stdev
max

6345.680
5608.517

26935.000

2.376
2.122

10.140

0.282
1.115
5.640

0.705
0.102
0.983

0.474
1.654
7.787

0.693
0.106
1.045

1.684 
3.957 

17.098 

0.681 
0.132 
1.061 

1.634 
4.154 

17.158 

0.688 
0.116 
0.968 

0.401 
1.404 
5.936 

0.741 
0.087 
0.905 

0.104 
0.735 
5.197 

0.744 
0.105 
1.014 

12

0.25
min

stdev
max

32307.720
85675.009

550749.000

10.124
29.093

194.516

0.251
0.688
3.168

1.247
0.171
1.607

0.389
1.076
5.305

1.200
0.125
1.607

0.276 
0.789 
4.019 

1.220 
0.152 
1.638 

0.175 
0.506 
2.590 

1.201 
0.162 
1.841 

0.218 
0.619 
2.392 

0.947 
0.162 
1.310 

0.201 
0.537 
2.590 

0.894 
0.141 
1.216 

0.50
min

stdev
max

136901.980
252315.982

1557999.000

47.363
85.997

522.491

0.480
1.093
4.211

1.216
0.177
1.576

0.547
1.020
3.880

1.197
0.140
1.528

0.528 
1.136 
4.617 

1.167 
0.177 
1.591 

0.391 
1.066 
4.348 

1.206 
0.133 
1.498 

0.463 
0.967 
3.656 

1.027 
0.149 
1.497 

0.325 
0.775 
3.656 

1.008 
0.124 
1.311 

0.75
min

stdev
max

114468.160
129053.856
741702.000

45.881
51.818

294.825

0.323
0.840
3.246

1.086
0.136
1.342

0.390
1.026
4.942

1.110
0.149
1.404

0.879 
2.063 
9.163 

1.054 
0.162 
1.404 

1.495 
2.800 
9.411 

1.068 
0.170 
1.420 

0.261 
0.781 
3.246 

1.395 
0.254 
2.138 

0.142 
0.464 
2.415 

1.424 
0.251 
1.840 

14

0.25
min

stdev
max

130813.680
327876.516

1731456.000

43.966
118.075
652.112

0.163
0.364
1.704

1.968
0.333
2.886

0.178
0.430
1.947

1.914
0.253
2.637

0.136 
0.353 
1.752 

1.944 
0.334 
2.995 

0.090 
0.314 
1.704 

1.883 
0.315 
2.964 

0.047 
0.138 
0.626 

1.489 
0.268 
2.059 

0.122 
0.367 
1.572 

1.335 
0.254 
1.857 

0.50
min

stdev
max

2265773.300
7714071.195

53542762.000

791.922
2558.963

17535.788

0.403
0.800
3.997

1.842
0.222
2.262

0.308
0.640
2.559

1.899
0.234
2.559

0.535 
1.130 
5.272 

1.841 
0.226 
2.278 

0.845 
1.874 
8.529 

1.831 
0.246 
2.449 

0.349 
0.732 
2.786 

1.621 
0.236 
2.152 

0.208 
0.410 
1.746 

1.583 
0.267 
2.231 

0.75
min

stdev
max

2098528.640
4105715.259

24691450.000

924.641
1804.679

10719.761

0.484
1.090
4.472

1.711
0.257
2.340

0.558
1.293
4.938

1.782
0.273
2.496

0.930 
1.660 
6.515 

1.761 
0.297 
2.465 

0.917 
1.634 
5.890 

1.736 
0.281 
2.262 

0.784 
1.552 
5.823 

2.696 
0.688 
4.259 

0.516 
1.235 
4.938 

2.727 
0.761 
4.492 

16

0.25
min

stdev
max

770818.680
1480787.395
8438177.000

264.906
507.379

2726.807

0.190
0.514
2.874

2.642
0.409
3.400

0.097
0.216
1.031

2.646
0.392
3.900

0.145 
0.340 
1.565 

2.609 
0.379 
3.620 

0.111 
0.282 
1.631 

2.640 
0.485 
4.134 

0.150 
0.285 
1.254 

2.064 
0.438 
3.260 

0.098 
0.227 
1.097 

1.923 
0.391 
2.840 

0.50
min

stdev
max

42578727.660
94271771.587

575437879.000

16070.926
34519.158

207045.670

0.466
0.743
2.506

2.497
0.361
3.291

0.271
0.570
2.505

2.556
0.381
3.416

0.376 
0.700 
3.339 

2.421 
0.372 
3.603 

0.427 
0.793 
3.356 

2.521 
0.354 
3.697 

0.313 
0.733 
3.522 

2.355 
0.339 
3.214 

0.356 
0.644 
2.506 

2.319 
0.335 
2.964 

0.75
min

stdev
max

91528074.240
115878982.281
467692412.000

45095.698
57796.367

243136.801

0.195
0.461
2.434

2.231
0.383
2.979

0.276
0.505
1.527

2.313
0.287
2.855

1.237 
2.409 
8.808 

2.095 
0.440 
3.759 

0.925 
1.904 
8.006 

2.244 
0.404 
3.104 

0.478 
1.090 
5.827 

5.405 
1.576 
9.765 

0.490 
1.119 
5.827 

5.400 
1.570 
9.080 

<Table 1> Results of Numerical Experiments (CPU time in s)

CPU time using the B&B algorithm. The CPU time of the 
B&B algorithm was compared to that required by the GAs. 
To compare the six GAs, we defined the relative deviation 
percentage (RDP) as

      
 

× (16)

4.2 Experimental Results and Assessment

Our numerical experiments considered the solutions to 600 
problem instances. For each system configuration and sol-
ution method, we calculated the mean, standard deviation 
(stdev), maximum number of generated nodes (for the B&B), 

CPU time (in seconds), and % error. <Table 1> shows the 
experimental results. B&B could solve instances with up to 
14 jobs with a reasonable CPU time. Even when  , 
it solved instances generated using   0.25 efficiently. For 
a fixed value of , B&B took more time to obtain the optimal 
solution as the value of was increased. This is because, from 
Eq. 15, small values of   increase the value of , since 
 ≤. Similarly, larger values of   make  smaller, giv-
ing a tight upper bound  for agent  , and making it diffi-
cult to find an optimal solution using B&B. 

Overall, the GAs exhibited good performance in the sense 
that they gave small % errors, with a mean of less than 1% 
in almost every configuration. Even for the largest config-
uration     , the maximum % error (using ) 
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<Table 2> Relative Deviation Percentage of GAs

  Value of                

10

0.25
min

stdev
max

0.096
0.291
1.328

0.113
0.302
1.652

0.137
0.398
1.986

0.192
0.591
3.292

0.038
0.147
0.860

0.059
0.264
1.627

0.50
min

stdev
max

0.635
1.929

11.616

0.460
1.873

11.820

0.750
2.309

11.616

0.556
1.984

11.616

0.857
2.548

11.820

0.688
2.604

11.820

0.75
min

stdev
max

1.183
5.150

32.584

1.316
4.995

31.522

2.798
6.344

32.584

2.747
6.477

32.584

1.468
5.613

31.522

0.429
2.335

15.528

12

0.25
min

stdev
max

0.530
1.626
8.906

0.697
1.812
8.906

0.535
1.469
6.640

0.356
1.123
6.068

0.371
1.087
6.068

0.528
1.758
8.906

0.50
min

stdev
max

1.045
3.707

23.466

0.949
3.415

23.466

0.733
1.920
9.671

0.530
1.675
9.671

0.482
1.140
4.617

0.412
1.327
7.710

0.75
min

stdev
max

0.604
1.836
9.411

0.829
2.363

12.316

2.020
6.007

36.354

2.965
6.904

36.354

0.554
1.828
9.411

0.606
2.125

12.316

14

0.25
min

stdev
max

0.214
0.561
3.318

0.230
0.623
3.366

0.347
1.617

11.325

0.173
0.565
3.144

0.153
0.610
3.845

0.192
0.527
2.331

0.50
min

stdev
max

0.598
1.381
5.631

0.495
1.241
6.581

0.893
1.988
8.603

1.352
2.798

11.910

0.458
1.052
4.377

0.327
0.928
4.377

0.75
min

stdev
max

0.629
2.138

12.954

0.766
2.449

13.258

1.194
2.812

13.258

1.600
3.585

19.931

1.172
2.840

12.954

0.838
2.480

13.258

16

0.25
min

stdev
max

0.261
0.768
3.677

0.096
0.237
1.031

0.188
0.485
2.795

0.159
0.563
3.612

0.176
0.416
2.469

0.123
0.399
2.469

0.50
min

stdev
max

0.698
1.789

10.153

0.892
4.135

28.580

0.594
1.521
8.210

0.851
2.470

14.576

0.572
1.855

10.153

0.477
1.176
6.913

0.75
min

stdev
max

0.836
2.826

13.102

0.582
1.950

13.102

2.195
4.294

21.386

1.437
3.127

13.062

0.907
2.353

13.062

0.861
2.283

13.062

was less than 5%. In terms of computation time, the 3~9 s 
CPU time of the GAs is favorable over that of B&B in environ-
ments where the scheduling problem has tight time constraints.

<Figure 1> Average of the Mean RDPs for GAs Using Different 

Initial Population Methods

A comparative analysis of the performance of each GA 
was conducted by computing the RDPs among the GAs by 
Eq. 16 and comparing the mean, standard deviation, and 
maximum values. The results are given in <Table 2>. In 
terms of the initial population, the method of random gen-
eration gave better RDP values, indicating that special meth-
ods for generating the initial population did not affect the 
quality of the final solution. The initial population only influ-
enced the convergence of the GA when agent   had a tight 
upper bound . <Figure 1> shows the average of the mean 
RDPs for GAs using three initial population methods and 
different combinations of   , where      , 
represents GAs using  as the initial population method. 
Note that GAs using  had low average RDPs in eight 
of the twelve configurations. Even when this does not give 
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the best result, the difference from the best is less than 0.5%. 
Comparing two GAs using ,    is superior to 
   because it gave a low average RDP in more 
cases. Based on these observations, we claim that the GA 
using a random initial population and the two-point crossover 
operation, represented by   , is superior to the 
other GAs. 

The number of generated nodes and CPU time of B&B 
increased exponentially with the number of jobs , whereas 
the CPU time of the GAs increased linearly within the range 
0.5~5.5 s. For the largest configuration of     , 
B&B took an average of 45,095.698 s (12.53h) to find an 
optimal solution, whereas the GAs took only 2~5 s, depend-
ing on the method of generating the initial population. More 
precisely, GAs using  and  for the initial population 
took about 2 s, while GAs using  (the random initial pop-
ulation) required around 5.4 s. 

It would also appear that the CPU times were affected 
by the value of and the method of generating the initial 
population. For a fixed value of , small values of   (i.e., 
0.25 and 0.50) result in faster convergence for those GAs 
using . However, GAs using  with    were 
slower than others. Therefore, it seems that the exploration 
ability of GA is restricted by the tightness of , and a specif-
ic method for generating the initial population allows the 
GA to converge faster than when the initial population is 
generated randomly. However, fast convergence does not 
necessarily mean that the solution is of good quality.

5. Conclusions

In this paper, we considered the two-agent single-machine 
scheduling problem with linear job-dependent position-based 
learning effects, where each job has a different learning ratio. 
The objective was to minimize the total weighted completion 
time for one agent, with the restriction that the makespan 
of the other agent cannot exceed a given upper bound. Since 
this problem is at least binary NP-hard, we suggested some 
efficient GAs using different methods for generating the ini-
tial population and crossover operations. A B&B algorithm 
incorporating several dominance properties and a lower 
bound was developed to find the optimal solution. The com-
putational results indicate that the B&B algorithm could 
solve instances with up to 14 jobs in a reasonable amount 
of CPU time, and it was found that   , which 
uses a random initial population and the two-point crossover 

operation, performed well in almost every configuration. 
Overall, from the perspective of computation time, the 3~9 
s of CPU time required by the GAs will generally be pref-
erable to the CPU time of the B&B approach in environments 
where the scheduling problem has tight time constraints. 

In future research, we will extend the current method in 
three ways. First, we will consider other performance ob-
jectives for the two agents, such as minimizing tardiness, 
weighted tardiness, or the number of tardy jobs. These are 
practical issues in industry, although they can make the prob-
lem more difficult. Second, we will use other learning effects 
so that the actual processing time is dependent on the sum 
of processing times of preceding jobs. This learning effect 
is nonlinear, making it more difficult to find optimal sol-
utions to the two-agent scheduling problem. Finally, ex-
tensions to the multi-agent or multi-machine environments 
are another interesting topic for consideration.
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