
J. Soc. Korea Ind. Syst. Eng Vol. 38, No. 3 : 169-180, September 2015 ISSN : 2005-0461(print)
http://dx.doi.org/10.11627/jkise.2015.38.3.169 ISSN : 2287-7975(online)

Two-Agent Single-Machine Scheduling with Linear
Job-Dependent Position-Based Learning Effects

Jin Young Choi†

Department of Industrial Engineering, Ajou University

작업 종속 및 위치기반 선형학습효과를 갖는
2-에이전트 단일기계 스케줄링

최 진 영†

아주대학교 산업공학과

Recently, scheduling problems with position-dependent processing times have received considerable attention in the literature,
where the processing times of jobs are dependent on the processing sequences. However, they did not consider cases in which
each processed job has different learning or aging ratios. This means that the actual processing time for a job can be determined
not only by the processing sequence, but also by the learning/aging ratio, which can reflect the degree of processing difficulties
in subsequent jobs. Motivated by these remarks, in this paper, we consider a two-agent single-machine scheduling problem with
linear job-dependent position-based learning effects, where two agents compete to use a common single machine and each job
has a different learning ratio. Specifically, we take into account two different objective functions for two agents: one agent minimizes
the total weighted completion time, and the other restricts the makespan to less than an upper bound. After formally defining
the problem by developing a mixed integer non-linear programming formulation, we devise a branch-and-bound (B&B) algorithm
to give optimal solutions by developing four dominance properties based on a pairwise interchange comparison and four properties
regarding the feasibility of a considered sequence. We suggest a lower bound to speed up the search procedure in the B&B
algorithm by fathoming any non-prominent nodes. As this problem is at least NP-hard, we suggest efficient genetic algorithms
using different methods to generate the initial population and two crossover operations. Computational results show that the proposed
algorithms are efficient to obtain near-optimal solutions.

Keywords：Two-Agent Single-Machine Scheduling, Job-Dependent Position-Based Processing Time, Total Weighted Completion
Time, Makespan, Branch-and-Bound Algorithm, Genetic Algorithm

1. Introduction1)

In this paper, we consider a scheduling problem in which
two agents compete to use a common single machine, and each

Received 6 August 2015; Finally Revised 17 September 2015;
Accepted 17 September 2015
†Corresponding Author : choijy@ajou.ac.kr

agent has different performance objectives when processing
a set of jobs. The processing order of one job belonging to
one agent can affect the objective function of the other agent.
Therefore, we need to find a schedule that optimizes two
objective functions at the same time by considering the impact
of scheduled jobs on the objective functions of two agents.

This scenario is called a two-agent scheduling problem,
and requires special attention. If we handle this problem as

Jin Young Choi170

a simple bi-criteria, single-agent optimization problem, we
could use one of two general approaches : (i) represent the
objective function as the weighted sum of two objective functions,
or (ii) consider two objective functions one-by-one, using
the first result as a new constraint for the second. However,
neither of these methods can guarantee the optimality of the
obtained solution, as the two objective functions might have
different measurement units, and all jobs contribute to all
criteria [2]. Therefore, two-agent scheduling problems are diffe-
rent from those commonly referred to as bi-criteria scheduling
problems. The complexity of two-agent scheduling problems
is higher than that of bi-criteria scheduling problems, and
we need to devise more efficient and systematic approaches.

Two-agent scheduling problems occur in various industrial
environments where two agents interact to perform their re-
spective tasks using a common processing resource. For exam-
ple, let us consider a project scheduling problem in a firm.
As explained in [15], over time, multiple projects within a
factory might compete to use shared common renewable re-
sources, such as people and machinery. Each project manager
is responsible for achieving good performance on his or her
project, and so the use of these resources must be negotiated
with other project managers. Another example can be found
when tasks in a mechanical workshop require rescheduling
[26]. If the main objective is to minimize the total flow time,
some jobs that have not been done on one day become urgent
the next. Two groups of jobs can then be assigned to two
agents with different objective functions.

In recent decades, there have been a number of studies
on this issue. First, the concept of two-agent scheduling prob-
lems was introduced by [4], which analyzed the computa-
tional complexity of combining two criteria into a single ob-
jective function. Then, Agnetis et al. [1] addressed the two-
agent scheduling problem by considering the makespan, late-
ness, sum of completion times, and sum of weighted com-
pletion times, and analyzed the problem complexity while
suggesting some solution algorithms. Ng et al. [25] consid-
ered the case whereby one agent minimizes the sum of com-
pletion times, while restricting the number of tardy jobs with-
in a bound for the other agent, and showed that this problem
is NP-hard under the condition of high multiplicity. Cheng
et al. [9] extended the work of Agnetis et al. [1] to multi-
agent scheduling problems. Readers who are interested in
this topic are referred to [11, 18, 32], and the references therein.

The above studies did not consider cases in which the
job processing time depends on the position (or start time)
of a job within the overall sequence. We call this the posi-

tion-dependent processing time. In the literature, this process-
ing time is categorized as having a learning effect or an aging
effect. With a learning effect, the actual processing time of
a job decreases according to its position in the sequence.
For example, repeated processing of similar tasks improves
workers’ skills, increasing the speed of machine operation.
With an aging effect, the actual processing time of a job
increases with its position in the sequence. As a practical
example, we can consider the continuous casting and rolling
processes in a steel plant, where the hot and cold charge
process can be regarded as two agents - the processing time
of the charges will increase with time due to the drop in
temperature [20].

Recently, scheduling problems with position-dependent pro-
cessing times have received considerable attention in the li-
terature. Specifically, Biskup [5] introduced the concept of
the learning effect into scheduling problems for a single
agent. Mosheiov [24] mentioned the aging effect, and showed
that a V-shaped schedule is optimal for the single-machine
flowtime minimization problem [23]. Biskup [6] provided
an extensive survey on scheduling problems with learning
effects, and Kuo and Yang [16] considered a single-machine
scheduling problem with a cyclic aging effect. Chang et al.
[7] studied the learning/aging effect scheduling problem on
a single machine with a common due date. For more recent
results, see [30, 27, 33].

To the best of our knowledge, few studies on scheduling
problems have simultaneously considered two-agent and posi-
tion (or start time)-dependent processing times. These studies
can be categorized by the functional representation method
they use to compute the actual processing times : (i) linear
function-based approaches (e.g., [20, 21, 17, 31]), and (ii)
exponential function-based approaches (e.g., [10, 19, 29]).
The above studies considered different combinations of ob-
jective functions, such as the (weighted) sum of completion
times, (weighted) sum of tardiness, or lateness for one agent,
under a constraint on the number of tardy jobs or the upper
bound of the makespan for the other agent.

However, they did not consider cases in which each proc-
essed job has different learning or aging ratios. This means
that the actual processing time for a job can be determined
not only by the processing sequence, but also by the learn-
ing/aging ratio, which can reflect the degree of processing
difficulties in subsequent jobs. This modeling concept for
the processing time was first suggested by Cheng and Wang
[8]. Later, Bachman and Janiak [3] analyzed a simpler learn-
ing effect formulation for a single-machine case, and Wang

Two-Agent Single-Machine Scheduling with Linear Job-Dependent Position-Based Learning Effects 171

and Xia [28] applied the concept to multiple-machine flow-
shop scheduling with an increasing series of dominating
machines. These are plausible scenarios in real-life schedul-
ing environments, and hence they deserve to be applied to
the case of two-agent single-machine scheduling.

Thus, in this paper, we consider a two-agent single-ma-
chine scheduling problem with linear job-dependent posi-
tion-based learning effects, where each job has a different
learning ratio. Specifically, we take into account two ob-
jective functions such that one agent wants to minimize the
total weighted completion time and the other agent wishes
to restrict the makespan to within some upper bound. We
formally define the problem by developing a mathematical
formulation, and devise a branch-and-bound (B&B) algo-
rithm to give optimal solutions. As this problem is at least
binary NP-hard, we suggest efficient genetic algorithms (GAs)
using different methods to generate the initial population and
two crossover operations to find near-optimal solutions, and
verify their performance by means of a numerical experiment.

The rest of this paper is organized as follows. In Section
2, we formally define the two-agent single-machine schedul-
ing problem with linear job-dependent position-based learn-
ing effects by developing an appropriate mixed integer pro-
gramming (MIP) model and design a B&B algorithm to find
optimal solutions. In Section 3, we develop efficient GAs
that give near-optimal solutions and verify the performance
of these algorithms using a numerical experiment in Section
4. Finally we give our conclusions and suggestions for future
work in Section 5.

2. Problem Definition and a Branch-
and-Bound Algorithm

2.1 Problem Definition

The scheduling problem considered can be described as
follows : Consider two agents  and  , each with a set
of non-preemptive  jobs    ⋯ 

 , where


 represents the th job of agent , for ∈. Any

of these jobs can be processed at the beginning of the oper-
ation, and each of them is processed by a single common
machine. Therefore, the two agents compete to use the ma-
chine while optimizing their own objective functions, which
are dependent on the completion times of all jobs. Specifi-
cally, we assume that agent  is aiming to minimize the

sum of the weighted completion times of all jobs in ,

represented by 







, and that agent  must ensure that

the makespan  is less than a given upper bound ,

where  and  are the weight and the completion time
of job , respectively, for     ⋯ .

Based on this problem description, we consider a special
model for processing times that are position-dependent linear
functions with job-dependent learning effects. Thus, for
agent ∈ , the actual processing time of job  proc-

essed in th position in a sequence, represented by  ,
has a learning effect of    , where  is the
normal processing time of job  and    is the constant

learning ratio of job , for ∈   ⋯  and
∈    ⋯  . Different schedules may

therefore give different values 







 and  for the

two agents. Specifically, for a schedule  , we represent these as









 and   , where   can be computed

as   


∈ using  to represent the com-

pletion time of  ∈  . Furthermore, because all process-
ing times are positive, we assume that


  




∀
 ∈ ∈.

Using the three-field notation , suggested by [12],
we can denote the scheduling problem as

 
  

 
 

  
 











  
 ≤

 (1)

where the first component  is the number of machines,
 describes the job characteristics, and  contains the ob-
jective functions. Therefore, Eq. 1 represents the two-agent
single-machine scheduling problem with linear job-depend-
ent position-based learning effects.

Furthermore, by defining

 









   ≤ ≤ 


     ≤ ≤ 

Jin Young Choi172

we can develop the following MIP model for the problem
under consideration :

  





 (2)



 














    ≤ ≤ 






     ≤ ≤ 
(3)

  









    ⋯  (4)

  




    ⋯  (5)

  ≤    ⋯  (6)

 




      ⋯  (7)

 




     ⋯  (8)

  ≥     ⋯  (9)

  ≥    ⋯  (10)

 ∈     ⋯    ⋯  (11)

where  is defined as    if job  is assigned to the
th position and   , otherwise.  is the completion time
of job ,  is the processing time of job , and  is
the completion time of the job in position . Eq. 2 therefore
represents the total weighted completion time of agent ,
which is the objective function of this agent, and Eq. 3 denotes
the position-dependent processing time of job  under consid-
eration of learning effects. Eq. 4 computes the completion
time of the th job, and the completion time of job  can
be obtained by using this in Eq. 5. Eq. 6 is the upper-bound
makespan condition for agent  . Eqs. 7 and 8 are job assign-
ment conditions: each job must be assigned to only one posi-
tion, and each position can have only one job. Eqs. 9 and
10 are non-negativity conditions for variables  and ,
and Eq. 11 is the binary condition for variable  .

Agnetis et al. [1] showed that a two-agent single-machine

scheduling problem  
 






  
 is binary NP-hard, even

without job learning or aging effects. Therefore, our problem
is at least binary NP-hard, necessitating the development of
an efficient solution procedure to find a (near-) optimal solu-
tion.

2.2 Properties for Dominance and Feasibility

First, we develop four dominance properties based on a
pairwise interchange comparison. Suppose that there are two
sequences       and       ,
where  and  represent the scheduled and unscheduled
parts, respectively. In , two jobs  and  are in the
th and  th positions, respectively, whereas  is ob-
tained by interchanging  and  in . Then, by defining
 as the completion time of sequence , we have the follow-
ing properties.

(Property 1)
If two jobs 

 
∈  satisfy (i)    and (ii)




 ≤  , then  dominates .

Proof : From the definition, we can compute the completion
times of  and  for schedules  and  as
follows.

 
   

    

   

    

From   , we have    . Since  ≤

 , we have 
≤





 . Therefore,  can have a smaller

total weighted completion time for agent  and a faster makespan
for agent  than . This means that  dominates . ■

Three further properties can be proved in a similar manner
to Property 1.

(Property 2)
Given two jobs  ∈ , if (i)    and (ii)  


 ≤, then  dominates .

(Property 3)
Given two jobs ∈ ∈ , if (i)    (ii) 

 ≥  and (iii)   ≤, then 

dominates .

(Property 4)
Given two jobs ∈ ∈, if (i)    (ii) 


 ≥  and (iii)  ≤, then  dominates .

Two-Agent Single-Machine Scheduling with Linear Job-Dependent Position-Based Learning Effects 173

Additionally, we can state the following four properties
regarding the feasibility of a sequence. Suppose that we have
a sequence of jobs   , where the scheduled part  con-
sists of  jobs and the unscheduled part  consists of
 jobs. Furthermore, let  be the minimum
actual processing time of jobs that can be scheduled in the
th position in , which is position  in the whole
sequence.

(Property 5)
Given a job ∈∩ scheduled in the  th position with

  , then   is infeasible.

Proof : Since job ∈∩ in the  th position has 
, it violates the condition for agent  . ■

(Property 6)
Given a job ∈∩ scheduled in the  th position with

   and a job ∈∩, then   cannot gene-
rate any feasible sequence.

Proof : Since job ∈∩ and  , the completion

time of any job ∈∩ must be greater than
. Therefore, any sequence generated from  
is not feasible. ■

(Property 7)
Given a job ∈∩,  ≤, and  
, then   cannot generate any feasible sequence.

Proof : By the definition of  , we have  
for any job ∈∩ and any position
 in . Therefore, we have  for any job

∈∩, making any schedule generated from
  infeasible. ■

(Property 8)
If all jobs in  belong to agent  , then sequence  
should be   , where  is the sequence obtained by sche-
duling jobs in  in non-decreasing order of  .

Proof : Since all jobs in  belong to agent  , we have
a scheduling problem with  jobs for agent
 , represented by


  

 


 . (12)

According to Bachman and Janiak [3], this problem can
be optimized by scheduling jobs in non-decreasing order of

 . ■

2.3 Branch-and-Bound Algorithm

Using the properties stated above, we now develop an effi-
cient B&B algorithm. The algorithm attempts to assign jobs
in a forward manner, i.e., iteratively from the first position.
The basic idea is to branch a node into several nodes, each
corresponding to the scheduling of one job among all possi-
ble jobs, and to bound each of them by computing the poten-
tial minimum value (i.e., lower bound) of the total weighted
completion time of agent  for the schedule under consid-
eration [14]. For each node, we perform the following pro-
cess.

At each iteration of the algorithm, suppose that we have
a sequence of jobs     , where the unscheduled part
 comprises  jobs for agent  and  jobs for agent
 . Then, we have

    ≥ 

  ≥  




 (13)

where   is the actual processing time of the 
th job. Therefore, we can use Eq. 13 as the estimator of
    , represented by

  






We can also sort the weights of the unscheduled  jobs
into non-increasing order, as  ≥ ≥⋯≥

 . Then,

the lower bound of 







 can be computed as fol-

lows.

(Lemma 1)

For schedule  with   , the lower bound of 









at the current iteration is

  


 


 

 





 

 , (14)

Jin Young Choi174

where  and  represent the weight and completion time
of the job scheduled in th position among all  
jobs for agent  in  , respectively. Furthermore,  de-
notes the minimum completion time of a job scheduled in
th position among all  jobs for agent  in .

Proof : The first term in Eq. 14 computes the total weighted
completion time of   scheduled jobs for

agent  in  . According to [13], 




 is mini-

mized if the two sequences of numbers  and 
are monotonic in the opposite sense. Based on this,
the minimum value of the total weighted completion
time that can be achieved using the unscheduled 

jobs for agent  in  is 





 

 , which gives

the second term in Eq. 14, resulting in a lower bound
 for  . ■

Specifically, we can compute  by assigning the esti-

mated completion times      ⋯   to the
remaining   jobs for agents  and  as follows :

∙Step 1 : Set      and   .
∙Step 2 : If ≥  , or  , or   , go to Step 8.
∙Step 3 : If  ≤  and   , set  

  , update  as  , and go
to Step 7. Otherwise, go to Step 4.

∙Step 4 : If  , set  ,   and go
to Step 5. Otherwise, go to Step 6.

∙Step 5 : If   , update  as  . Go to Step 7.
∙Step 6 : If   , set   and   .
∙Step 7 : Set    and go to Step 2.
∙Step 8 : We have  for    ⋯ .

Since the lower bound gives the minimum value of the
total weighted completion time for agent  that can be ach-
ieved after finishing the allocation procedure, it can be used
to speed up the search procedure in the B&B algorithm by
fathoming any non-prominent nodes. We apply a depth-first
search to the B&B algorithm, the overall procedure of which
can be described as follows.

∙Initialization : Set ∞ and the current level   .
Apply the bounding step and fathoming step described be-

low to the whole problem. If it is not fathomed, consider
this as the one remaining subproblem for the iteration
below.
∙Steps for each iteration :

1. branching : If there are no remaining subproblems at
the current level  , set ← and go to the opti-
mality test step. Otherwise, choose the subproblem with
the best lower bound  among those remaining at
the current level  . If more than one subproblem have
the lowest value of  , select one at random. Branch
from the node to create new subproblems as follows:

 (a) If all remaining jobs belong to agent  , then apply
Property 8 to generate one subproblem correspond-
ing to the scheduling of all remaining jobs for agent  .

 (b) Otherwise, create subproblems corresponding to the
case of scheduling one remaining, non-dominated
(by Properties 1 to 4), and feasible (by Properties
5 to 7) job in the  th position, where  is
the last position of the scheduled part for the se-
lected node.

 (c) For each new subproblem, update the set of schedu-
led jobs and unscheduled jobs for agents  and  .

2. bounding : For each new subproblem, compute 
and  using Eq. 14.

3. Fathoming : For each new subproblem, apply the fol-
lowing two fathoming tests. A subproblem with a se-
quence of jobs   is fathomed if

 (a) Test 1 :  , or
 (b) Test 2 : There are no remaining jobs to be scheduled

(If  , this becomes the new value
of , and Test 1 is reapplied to all un-
fathomed subproblems with this new ).

 (c) Set  ←.
∙Optimality test : Stop and accept the current solution as

optimal if there are no remaining subproblems or if   .
Otherwise, perform another iteration.

3. An Efficient GA

It is well known that B&B algorithms require considerable
computational time to find optimal solutions to large-sized
or computationally difficult problems. Therefore, we develop
a GA Mitchell [22], a well-known meta-heuristic approach
that can find near-optimal solutions efficiently. The compo-
nents of the suggested GA are as follows.

Two-Agent Single-Machine Scheduling with Linear Job-Dependent Position-Based Learning Effects 175

∙Design of a chromosome : First, we design a chromosome
 as an -dimensional array representing a sequence of
 jobs for two agents. Each gene represents the job num-
ber, and its position in the chromosome corresponds to
the order of the jobs in a schedule. Then, we can make
the following statement on the validity of the suggested
structure for a chromosome.

(Property 9) Feasibility condition for a chromosome
A chromosome is valid and feasible as a sequence for the
scheduling problem under consideration if all jobs repre-
sented by genes satisfy the following two conditions : (i)
job numbers are not duplicated, and (ii) the makespan for
agent  satisfies the upper-bound condition.

∙Initialization of a population : We consider three methods
of generating a chromosome to initialize a population :
1.  : Arrange the jobs for agent  in non-decreasing

order of  , then schedule the jobs for agent 
in order of shortest normal processing time.

2.  : Schedule the jobs for agent  in non-decreasing
order of  , then arrange the jobs for agent 
in order of weighted shortest normal processing
time.

3.  : Create a chromosome at random. If it does not
satisfy Property 9, regenerate it.

We make  chromosomes for the initial population, where
 is an even number. During the GA procedure, we allow
a modest number of duplications, and set × to in-
crease the diversity of the chromosomes.

∙Fitness cost function : We use the total weighted com-
pletion time of jobs for agent  as the fitness cost.
∙Parent selection : Chromosomes in the population are sort-

ed in ascending order of fitness cost, and are then paired,
starting from those with the smallest fitness cost. Each
pair generates two offspring by applying the following re-
production process.
∙Reproduction : Reproduction generates offspring that have

the parents’ characteristics. First, we use a crossover opera-
tion, exchanging some parts of two chromosomes. Specifi-
cally, we consider two kinds of crossover operation : (i)
 : one-point crossover, and (ii)  : two-point cross-
over. However, in general, any crossover operation applied
to a scheduling problem encounters a feasibility issue in

the resulting chromosome, where there might be some du-
plicated genes. Therefore, we design a special method that
guarantees the feasibility of the resulting chromosome.
Suppose that we have two parents  and . One-point (two-
point) crossover randomly selects one point (two points)
on , and reorders the genes between the selected first
gene and the last (second) gene according to the sequence
in , producing a new offspring . If the offspring is
not feasible, we reapply this procedure. Similarly, we can
generate another offspring . For each pair of chromo-
somes, we apply this operation probabilistically according
to some pre-specified crossover rate      . Other-
wise, we generate two offspring as   and  .

Moreover, we apply a mutation operation to each chromo-
some by swapping two randomly selected genes. This oper-
ation is useful in escaping from local optima, and is applied
probabilistically according to some pre-specified rate 
    . If the resulting chromosome is not feasible under
Property 9, we repeat the procedure.

∙Reconstruction of a population : By applying the repro-
duction procedure to each pair of chromosomes, we can
generate  offspring. After evaluating the fitness cost of
all offspring, we have a total of × chromosomes. Then,
we can select the best  chromosomes to reconstruct a
new population of the same size.
∙Termination condition : We terminate the GA if one of

the following conditions is satisfied : (i) the maximum
number of iterations has been reached, or (ii) there is no
improvement in the solution for a fixed number of consec-
utive iterations.
∙Overall procedure of the suggested GA : The overall pro-

cedure of the suggested GA consists of three parts:
1. Initialization : Initialize the GA parameters such as the

crossover probability , mutation probability , and
termination conditions. Start with an initial population
of size  ×, and evaluate the fitness cost for
each member of the population. Sort chromosomes in
ascending order of fitness, and identify that which has
the minimum cost in the current population.

2. Iteration procedure : Pair up the chromosomes in order
of fitness cost values, from smallest to largest, and ap-
ply the reproduction procedure. Evaluate the fitness
costs of the generated offspring. Select the best  chro-
mosomes among the newly generated members and the

Jin Young Choi176

current population, and form a new population for the
next generation. Sort the population in ascending order
of fitness cost values, and identify the solution with
the minimum fitness cost.

3. Stooping rule : The GA stops with the best trial solution
found so far when a fixed number of consecutive iter-
ations do not result in any improvement. Otherwise, the
procedure is repeated for the next generation.

4. Numerical Experiments

4.1 Experimental Design

To verify the performance of the GA described in the pre-
vious section, we designed a numerical experiment. First,
we considered different scheduling problems by changing the
number of jobs for each agent. Specifically, we considered
    , assuming that each agent has the same
number of jobs. The value of  for agent  was generated
using the convex combination of the minimum value of the
makespan and the minimum value of the maximum make-
span, represented by  and , respectively. The value of
 can be obtained by solving the single-agent scheduling
problem in Eq. 12.  can be computed by the following
lemma.

(Lemma 2)
Let 




 denote the makespan of a schedule  with 

in the last position. Then, we have





 










 


≠









 

≠ 




 



   

and  


∈ ,

where   , if ≤ ≤  and   
 , if ≤ ≤

 ,

Proof : For any schedule  ′ obtained from schedule  by
removing  , we have





 


 ′   ′ 

 










 


≠






 

≠ 




 









 











 


≠









 

≠ 




 



  

where   ′  is the makespan of the remaining 
jobs using schedule  ′ . Furthermore, we can compute

 

≠ 




 



 by arranging the remaining jobs in non-

increasing order of  and  . ■
Now, we can obtain different values of  by defining

, (15)

where we consider the three different values of   0.25,
0.5 and 0.75. Therefore, we have 12 system configurations
defined by different pairs of   . For each configuration,
we produced 50 problem instances by randomly generating
normal processing times in the range 1-100, learning effects
in the range 1-100, and job weights in the range 1-100. Ac-
cordingly, we considered 4×3×50 = 600 problem instances.

Moreover, we considered three methods of generating the
initial population and two different reproduction operations.
Hence, we have 3×2 = 6 different GAs, represented by 
           . We determined the param-
eter values of these GAs by pretesting some randomly gen-
erated problem instances. As a result, we set   0.8,  

0.1, and applied the stopping condition if the GA went 30
iterations without any improvement. Each instance of the
scheduling problem was solved using the B&B algorithm and
the six GAs.

The performance of the GAs was evaluated in terms of
the percentage error, which is defined as


  

×

where  is the total weighted completion time. Fur-
thermore, we measured the number of generated nodes and

Two-Agent Single-Machine Scheduling with Linear Job-Dependent Position-Based Learning Effects 177

  Value of

                  

Nodes CPU time
%

error
CPU
time

%
error

CPU
time

%
error

CPU
time

%
error

CPU
time

%
error

CPU
time

%
error

CPU
time

10

0.25
min

stdev
max

3584.720
11098.810
77781.000

1.018
2.958

20.545

0.096
0.291
1.329

0.783
0.116
1.201

0.113
0.302
1.654

0.770
0.099
0.967

0.137
0.398
1.986

0.767
0.107
1.045

0.192
0.591
3.290

0.783
0.098
1.046

0.038
0.147
0.861

0.581
0.099
0.843

0.059
0.264
1.627

0.582
0.099
0.905

0.50
min

stdev
max

6748.140
9815.683

58041.000

2.134
3.227

19.563

0.220
0.671
3.382

0.763
0.100
1.107

0.048
0.211
1.072

0.764
0.101
1.139

0.231
0.933
5.242

0.773
0.102
1.045

0.111
0.575
4.030

0.755
0.081
0.967

0.280
0.980
4.896

0.609
0.092
0.858

0.040
0.165
1.072

0.599
0.089
0.827

0.75
min

stdev
max

6345.680
5608.517

26935.000

2.376
2.122

10.140

0.282
1.115
5.640

0.705
0.102
0.983

0.474
1.654
7.787

0.693
0.106
1.045

1.684
3.957

17.098

0.681
0.132
1.061

1.634
4.154

17.158

0.688
0.116
0.968

0.401
1.404
5.936

0.741
0.087
0.905

0.104
0.735
5.197

0.744
0.105
1.014

12

0.25
min

stdev
max

32307.720
85675.009

550749.000

10.124
29.093

194.516

0.251
0.688
3.168

1.247
0.171
1.607

0.389
1.076
5.305

1.200
0.125
1.607

0.276
0.789
4.019

1.220
0.152
1.638

0.175
0.506
2.590

1.201
0.162
1.841

0.218
0.619
2.392

0.947
0.162
1.310

0.201
0.537
2.590

0.894
0.141
1.216

0.50
min

stdev
max

136901.980
252315.982

1557999.000

47.363
85.997

522.491

0.480
1.093
4.211

1.216
0.177
1.576

0.547
1.020
3.880

1.197
0.140
1.528

0.528
1.136
4.617

1.167
0.177
1.591

0.391
1.066
4.348

1.206
0.133
1.498

0.463
0.967
3.656

1.027
0.149
1.497

0.325
0.775
3.656

1.008
0.124
1.311

0.75
min

stdev
max

114468.160
129053.856
741702.000

45.881
51.818

294.825

0.323
0.840
3.246

1.086
0.136
1.342

0.390
1.026
4.942

1.110
0.149
1.404

0.879
2.063
9.163

1.054
0.162
1.404

1.495
2.800
9.411

1.068
0.170
1.420

0.261
0.781
3.246

1.395
0.254
2.138

0.142
0.464
2.415

1.424
0.251
1.840

14

0.25
min

stdev
max

130813.680
327876.516

1731456.000

43.966
118.075
652.112

0.163
0.364
1.704

1.968
0.333
2.886

0.178
0.430
1.947

1.914
0.253
2.637

0.136
0.353
1.752

1.944
0.334
2.995

0.090
0.314
1.704

1.883
0.315
2.964

0.047
0.138
0.626

1.489
0.268
2.059

0.122
0.367
1.572

1.335
0.254
1.857

0.50
min

stdev
max

2265773.300
7714071.195

53542762.000

791.922
2558.963

17535.788

0.403
0.800
3.997

1.842
0.222
2.262

0.308
0.640
2.559

1.899
0.234
2.559

0.535
1.130
5.272

1.841
0.226
2.278

0.845
1.874
8.529

1.831
0.246
2.449

0.349
0.732
2.786

1.621
0.236
2.152

0.208
0.410
1.746

1.583
0.267
2.231

0.75
min

stdev
max

2098528.640
4105715.259

24691450.000

924.641
1804.679

10719.761

0.484
1.090
4.472

1.711
0.257
2.340

0.558
1.293
4.938

1.782
0.273
2.496

0.930
1.660
6.515

1.761
0.297
2.465

0.917
1.634
5.890

1.736
0.281
2.262

0.784
1.552
5.823

2.696
0.688
4.259

0.516
1.235
4.938

2.727
0.761
4.492

16

0.25
min

stdev
max

770818.680
1480787.395
8438177.000

264.906
507.379

2726.807

0.190
0.514
2.874

2.642
0.409
3.400

0.097
0.216
1.031

2.646
0.392
3.900

0.145
0.340
1.565

2.609
0.379
3.620

0.111
0.282
1.631

2.640
0.485
4.134

0.150
0.285
1.254

2.064
0.438
3.260

0.098
0.227
1.097

1.923
0.391
2.840

0.50
min

stdev
max

42578727.660
94271771.587

575437879.000

16070.926
34519.158

207045.670

0.466
0.743
2.506

2.497
0.361
3.291

0.271
0.570
2.505

2.556
0.381
3.416

0.376
0.700
3.339

2.421
0.372
3.603

0.427
0.793
3.356

2.521
0.354
3.697

0.313
0.733
3.522

2.355
0.339
3.214

0.356
0.644
2.506

2.319
0.335
2.964

0.75
min

stdev
max

91528074.240
115878982.281
467692412.000

45095.698
57796.367

243136.801

0.195
0.461
2.434

2.231
0.383
2.979

0.276
0.505
1.527

2.313
0.287
2.855

1.237
2.409
8.808

2.095
0.440
3.759

0.925
1.904
8.006

2.244
0.404
3.104

0.478
1.090
5.827

5.405
1.576
9.765

0.490
1.119
5.827

5.400
1.570
9.080

<Table 1> Results of Numerical Experiments (CPU time in s)

CPU time using the B&B algorithm. The CPU time of the
B&B algorithm was compared to that required by the GAs.
To compare the six GAs, we defined the relative deviation
percentage (RDP) as

      
 

× (16)

4.2 Experimental Results and Assessment

Our numerical experiments considered the solutions to 600
problem instances. For each system configuration and sol-
ution method, we calculated the mean, standard deviation
(stdev), maximum number of generated nodes (for the B&B),

CPU time (in seconds), and % error. <Table 1> shows the
experimental results. B&B could solve instances with up to
14 jobs with a reasonable CPU time. Even when  ,
it solved instances generated using   0.25 efficiently. For
a fixed value of , B&B took more time to obtain the optimal
solution as the value of was increased. This is because, from
Eq. 15, small values of  increase the value of , since
 ≤. Similarly, larger values of  make  smaller, giv-
ing a tight upper bound  for agent  , and making it diffi-
cult to find an optimal solution using B&B.

Overall, the GAs exhibited good performance in the sense
that they gave small % errors, with a mean of less than 1%
in almost every configuration. Even for the largest config-
uration     , the maximum % error (using )

Jin Young Choi178

<Table 2> Relative Deviation Percentage of GAs

  Value of                

10

0.25
min

stdev
max

0.096
0.291
1.328

0.113
0.302
1.652

0.137
0.398
1.986

0.192
0.591
3.292

0.038
0.147
0.860

0.059
0.264
1.627

0.50
min

stdev
max

0.635
1.929

11.616

0.460
1.873

11.820

0.750
2.309

11.616

0.556
1.984

11.616

0.857
2.548

11.820

0.688
2.604

11.820

0.75
min

stdev
max

1.183
5.150

32.584

1.316
4.995

31.522

2.798
6.344

32.584

2.747
6.477

32.584

1.468
5.613

31.522

0.429
2.335

15.528

12

0.25
min

stdev
max

0.530
1.626
8.906

0.697
1.812
8.906

0.535
1.469
6.640

0.356
1.123
6.068

0.371
1.087
6.068

0.528
1.758
8.906

0.50
min

stdev
max

1.045
3.707

23.466

0.949
3.415

23.466

0.733
1.920
9.671

0.530
1.675
9.671

0.482
1.140
4.617

0.412
1.327
7.710

0.75
min

stdev
max

0.604
1.836
9.411

0.829
2.363

12.316

2.020
6.007

36.354

2.965
6.904

36.354

0.554
1.828
9.411

0.606
2.125

12.316

14

0.25
min

stdev
max

0.214
0.561
3.318

0.230
0.623
3.366

0.347
1.617

11.325

0.173
0.565
3.144

0.153
0.610
3.845

0.192
0.527
2.331

0.50
min

stdev
max

0.598
1.381
5.631

0.495
1.241
6.581

0.893
1.988
8.603

1.352
2.798

11.910

0.458
1.052
4.377

0.327
0.928
4.377

0.75
min

stdev
max

0.629
2.138

12.954

0.766
2.449

13.258

1.194
2.812

13.258

1.600
3.585

19.931

1.172
2.840

12.954

0.838
2.480

13.258

16

0.25
min

stdev
max

0.261
0.768
3.677

0.096
0.237
1.031

0.188
0.485
2.795

0.159
0.563
3.612

0.176
0.416
2.469

0.123
0.399
2.469

0.50
min

stdev
max

0.698
1.789

10.153

0.892
4.135

28.580

0.594
1.521
8.210

0.851
2.470

14.576

0.572
1.855

10.153

0.477
1.176
6.913

0.75
min

stdev
max

0.836
2.826

13.102

0.582
1.950

13.102

2.195
4.294

21.386

1.437
3.127

13.062

0.907
2.353

13.062

0.861
2.283

13.062

was less than 5%. In terms of computation time, the 3~9 s
CPU time of the GAs is favorable over that of B&B in environ-
ments where the scheduling problem has tight time constraints.

<Figure 1> Average of the Mean RDPs for GAs Using Different

Initial Population Methods

A comparative analysis of the performance of each GA
was conducted by computing the RDPs among the GAs by
Eq. 16 and comparing the mean, standard deviation, and
maximum values. The results are given in <Table 2>. In
terms of the initial population, the method of random gen-
eration gave better RDP values, indicating that special meth-
ods for generating the initial population did not affect the
quality of the final solution. The initial population only influ-
enced the convergence of the GA when agent  had a tight
upper bound . <Figure 1> shows the average of the mean
RDPs for GAs using three initial population methods and
different combinations of   , where      ,
represents GAs using  as the initial population method.
Note that GAs using  had low average RDPs in eight
of the twelve configurations. Even when this does not give

Two-Agent Single-Machine Scheduling with Linear Job-Dependent Position-Based Learning Effects 179

the best result, the difference from the best is less than 0.5%.
Comparing two GAs using ,   is superior to
  because it gave a low average RDP in more
cases. Based on these observations, we claim that the GA
using a random initial population and the two-point crossover
operation, represented by   , is superior to the
other GAs.

The number of generated nodes and CPU time of B&B
increased exponentially with the number of jobs , whereas
the CPU time of the GAs increased linearly within the range
0.5~5.5 s. For the largest configuration of     ,
B&B took an average of 45,095.698 s (12.53h) to find an
optimal solution, whereas the GAs took only 2~5 s, depend-
ing on the method of generating the initial population. More
precisely, GAs using  and  for the initial population
took about 2 s, while GAs using  (the random initial pop-
ulation) required around 5.4 s.

It would also appear that the CPU times were affected
by the value of and the method of generating the initial
population. For a fixed value of , small values of  (i.e.,
0.25 and 0.50) result in faster convergence for those GAs
using . However, GAs using  with    were
slower than others. Therefore, it seems that the exploration
ability of GA is restricted by the tightness of , and a specif-
ic method for generating the initial population allows the
GA to converge faster than when the initial population is
generated randomly. However, fast convergence does not
necessarily mean that the solution is of good quality.

5. Conclusions

In this paper, we considered the two-agent single-machine
scheduling problem with linear job-dependent position-based
learning effects, where each job has a different learning ratio.
The objective was to minimize the total weighted completion
time for one agent, with the restriction that the makespan
of the other agent cannot exceed a given upper bound. Since
this problem is at least binary NP-hard, we suggested some
efficient GAs using different methods for generating the ini-
tial population and crossover operations. A B&B algorithm
incorporating several dominance properties and a lower
bound was developed to find the optimal solution. The com-
putational results indicate that the B&B algorithm could
solve instances with up to 14 jobs in a reasonable amount
of CPU time, and it was found that   , which
uses a random initial population and the two-point crossover

operation, performed well in almost every configuration.
Overall, from the perspective of computation time, the 3~9
s of CPU time required by the GAs will generally be pref-
erable to the CPU time of the B&B approach in environments
where the scheduling problem has tight time constraints.

In future research, we will extend the current method in
three ways. First, we will consider other performance ob-
jectives for the two agents, such as minimizing tardiness,
weighted tardiness, or the number of tardy jobs. These are
practical issues in industry, although they can make the prob-
lem more difficult. Second, we will use other learning effects
so that the actual processing time is dependent on the sum
of processing times of preceding jobs. This learning effect
is nonlinear, making it more difficult to find optimal sol-
utions to the two-agent scheduling problem. Finally, ex-
tensions to the multi-agent or multi-machine environments
are another interesting topic for consideration.

References

 [1] Agnetis, A., Mirchandani, P.B., Pacciarelli, D., and Pacifici,
A., Scheduling problems with two competing agents.
Operations Research, 2004, Vol. 52, No. 2, pp. 229-242.

 [2] Agnetis, A., Pacciarelli, D., and Pacifici A., Multi-agent
single machine scheduling. Annals of Operations Research,
2007, Vol. 150, No. 1, pp. 3-15.

 [3] Bachman, A. and Janiak, A., Scheduling jobs with posi-
tion-dependent processing times. Journal of the Opera-
tional Research Society, 2004, Vol. 55, pp. 257-264.

 [4] Baker, K.R. and Smith, J.C., A multiple-criterion model
for machine scheduling. Journal of Scheduling, 2003,
Vol. 6, No. 1, pp. 7-16.

 [5] Biskup D., Single-machine scheduling with learning con-
siderations. European Journal of Operational Research,
1999, Vol. 115, No. 1, pp. 173-178.

 [6] Biskup, D., A state-of-the-art review on scheduling with
learning considerations. European Journal of Operatio-
nal Research, 2008, Vol. 188, No. 2, pp. 315-329.

 [7] Chang, P.C., Chen, S.H., and Mani, V., A note on
due-date assignment and single machine scheduling
with a learning and aging effect. International Journal
of Production Economics, 2009, Vol. 117, No. 1, pp.
142-149.

 [8] Cheng, T.C.E. and Wang, G., Single machine schedul-
ing with learning effect considerations. Annals of Ope-
rations Research, 2000, Vol. 98, No. 1, pp. 273-290.

 [9] Cheng, T.C.E., Ng, C.T., and Yuna, J.J., Multi-agent

Jin Young Choi180

scheduling on a single machine to minimize total weighted
number of tardy jobs. Theoretical Computer Science,
2006, Vol. 362, No. 1-3, pp. 273-281.

[10] Cheng, T.C.E., Wu, W.H., Cheng, S.R., and Wu, C.C.,
Two-agent scheduling with position-based deterioration
jobs and learning effects. Applied Mathematics and
Computation, 2011, Vol. 217, No. 1, pp. 8804-8824.

[11] Ding, G. and Sun, S., Single-machine scheduling prob-
lems with two agents competing for makespan. Life
System Modeling and Intelligent Computing, 2010, Vol.
6328, pp. 244-255.

[12] Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy,
Kan AHG., Optimization and approximation in deter-
ministic sequencing and scheduling theory : a survey.
Annals of Discrete Mathematics, 1979, Vol. 5, pp. 287-326.

[13] Hardy, G., Littlewood, J., and Polya, G. Inequalities.
London : Cambridge University Press, 1967.

[14] Hillier, F.S. and Lieberman, G.J., Introduction to Opera-
tions Research, McGraw Hill, 2015.

[15] Knotts, G., Dror, M., and Hartman, B.C., Agent-based
project scheduling. IIE Transactions, 2000, Vol. 32,
No. 5, pp. 387-401.

[16] Kuo, W.H. and Yang, D.L., Minimizing the makespan
in a single-machine scheduling problem with the cyclic
process of an aging effect. Journal of the Operational
Research Society, 2008, Vol. 59, pp. 416-420.

[17] Lee, W.C., Wang, W.J., Shiau, Y.R., and Wu, C.C.,
A single-machine scheduling problem with two-agent
and deteriorating jobs. Applied Mathematical Model-
ling, 2010, Vol. 34, No. 10, pp. 3098-3107.

[18] Leung, J.Y.T., Pinedo, M.L., and Wan, G., Competitive
two-agent scheduling and its applications Operations
Research, 2010, Vol. 58, No. 2, pp. 458-469.

[19] Li, D.C. and Hsu, P.H., Solving a two-agent single-
machine scheduling problem considering learning effect.
Computers and Operations Research, 2012, Vol. 39,
No. 7, pp. 1644-1651.

[20] Liu, P., Yi, N., and Zhou, X., Two-agent single-machine
scheduling problems under increasing linear deteriora-
tion. Applied Mathematical Modelling, 2011, Vol. 35,
No. 5, pp. 2290-2296.

[21] Liu, P., Zhou, X., and Tang, L., Two-agent single-ma-
chine scheduling with position-dependent processing
times. International Journal of Advanced Manufactu-
ring Technology, 2010, Vol. 48, No. 1, pp. 325-331.

[22] Mitchell, M., An introduction to genetic algorithm, MIT
Press, 1996.

[23] Mosheiov, G., A note on scheduling deteriorating jobs.
Mathematical and Computer Modelling, 2005, Vol. 41,
No. 8-9, pp. 883-886.

[24] Mosheiov, G., Parallel machine scheduling with a lear-
ning effect. Journal of the Operational Research Society,
2001, Vol. 52, No. 10, pp. 1165-1169.

[25] Ng, C.T., Cheng, T.C.E., and Yuan, J.J., A note on
the complexity of the problem of two-agent scheduling
on a single machine. Journal of Combinatorial Optimi-
zation, 2006, Vol. 12, No. 4, pp. 387-394.

[26] Pessan, C., Bouquard, J.L., and Neron, E., An unrelated
parallel machines model for an industrial production re-
setting problem. European Journal of Industrial Engi-
neering, 2008, Vol. 2, No. 2, pp. 153-171.

[27] Wang, J. and Wang, M., Worst-case analysis for flow
shop scheduling problems with an exponential learning
effect. Journal of the Operational Research Society,
2012, Vol. 63, pp. 130-137.

[28] Wang, J.B. and Xia, Z.Q., Flow-shop scheduling with
a learning effect. Journal of the Operational Research
Society, 2005, Vol. 56, pp. 1325-1330.

[29] Wu, C.C., Huang, S.K., and Lee, W.C., Two-agent sche-
duling with learning consideration. Computers and Indu-
strial Engineering, 2011b, Vol. 61, No. 4, pp. 1324-1335.

[30] Wu, C.C., Yin, Y., and Cheng, S.R., Some single-machine
scheduling problems with a truncation learning effect.
Computers and Industrial Engineering, 2011a, Vol. 60,
No. 4, pp. 790-795.

[31] Wu, W.H., Xu, J., Wu, W.H., Yin, Y., Cheng, I.F.,
and Wu, C.C., A tabu method for a two-agent single-
machine scheduling with deterioration jobs. Computers
and Operations Research, 2013, Vol. 40, No. 8, pp.
2116-2127.

[32] Yin, Y., Cheng, S.R., Cheng, T.C.E., Wu, W.H., and
Wu, C.C., Two-agent single-machine scheduling with
release times and deadlines. International Journal of
Shipping and Transport Logistics, 2013, Vol. 5, No. 1,
pp. 75-94.

[33] Yin, Y., Xu, D., Cheng, S.R., and Wu, C.C., A generali-
zation model of learning and deteriorating effects on
a single-machine scheduling with past-sequence-depen-
dent setup times. International Journal of Computer
Integrated Manufacturing, 2012, Vol. 25, No. 9, pp.
804-813.

ORCID
Jin Young Choi | http://orcid.org/0000-0001-6397-3107

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

