References
- Al-Hamadi, H. M. and Soliman, S. A. (2004), Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model, Electric, Power Syst. Res., 68(1), 47-59. https://doi.org/10.1016/S0378-7796(03)00150-0
- Amjady, N. and Keynia, S. (2009), Short term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm, Energy, 34, 46-57. https://doi.org/10.1016/j.energy.2008.09.020
- Bashir, Z. A. and El-Hawary, M. E. (2009), Applying wavelets to short-term load forecasting using PSObased neural networks, IEEE Trans. Power Syst., 24, 20-27.
- Benaouda, D., Murtagh, F., Starck, J. L. and Renaud, O. (2006), Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting, Neurocomputing, 70, 139-154. https://doi.org/10.1016/j.neucom.2006.04.005
- Che, J., Wang, J., and Wang G. (2012), An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting, Energy, 37(1), 657-664. https://doi.org/10.1016/j.energy.2011.10.034
- Dongxiao, N., Wang, Y., and Wu, D. D. (2009), Power load forecasting using support vector machine and ant colony optimization, Expert Systems with Applications, 37(3), 2531-2539. https://doi.org/10.1016/j.eswa.2009.08.019
- Fan, S. and Chen, L. (2006), Short-term load forecasting based on an adaptive hybrid method, IEEE Trans. Power Syst., 21(1), 392-401. https://doi.org/10.1109/TPWRS.2005.860944
- Hagan, M. T. and Behr, S. M. (1987), The time series approach to short term load forecasting, IEEE Trans. Power Syst., 2(3), 785-791. https://doi.org/10.1109/TPWRS.1987.4335210
- Hippert, H. S., Pedreira, C. E., and Souza, R. C. (2001), Neural networks for short-term load forecasting: A review and evaluation, IEEE Trans. Power Syst., 16(1), 44-55. https://doi.org/10.1109/59.910780
- Hsu, C. W., Chang, C. C., and Lin, C. J. (2003), A practical guide to support vector classification, Department of Computer Science, National Taiwan University.
- Nikolaev, N. and Tino, P. (2005), Sequential relevance vector machine learning from time series, Neural Networks, IJCNN, Proceedings, IEEE International Joint Conference on, 2, 1308-1313
- Pandey, A. S., Singh, D., and Sinha, S. K. (2010), Intelligent hybrid wavelet models for short-term load forecasting, IEEE Trans. Power Syst., 25, 1266-1273. https://doi.org/10.1109/TPWRS.2010.2042471
- Ping-Feng, P. and Wei-Chiang, H. (2005), Support vector machines with simulated annealing algorithms in electricity load forecasting, Energy Conversion and Management, 46(17), 2669-2688. https://doi.org/10.1016/j.enconman.2005.02.004
- Qing Duan, J.-G., Zhao, L. N., and Ke, L. (2008), Regression Based on Sparse Bayesian Learning and the Applications in Electric Systems, Natural Computation, Fourth International Conference on, 106-110.
- Rocha Reis, J. and da Silva, A. P. A. (2005), Feature extraction via multiresolution analysis for shortterm load forecasting, IEEE Trans. Power Syst., 20, 189-198. https://doi.org/10.1109/TPWRS.2004.840380
- Song, K. B., Baek, Y. S., Hong, D. H., and Jang, G. (2005), Short-term load forecasting for the holidays using fuzzy linear regression method, IEEE Trans. Power Syst., 20(1), 96-101. https://doi.org/10.1109/TPWRS.2004.835632
- Taylor, J. W. and McSharry, P. E. (2007), Short-Term Load Forecasting Methods: An Evaluation Based on European Data, IEEE Trans. Power Syst., 22(4), 2213-2219. https://doi.org/10.1109/TPWRS.2007.907583
- Tipping, M. E. (2001), Sparse Bayesian learning and the relevance vector machine, J. Mach. Learn. Res., 1, 211-244.
- Zhang, B.-L. and Dong, Z.-Y. (2001), An adaptive neural-wavelet model for short term load forecasting, Electr. Power Syst. Res., 59, 121-129. https://doi.org/10.1016/S0378-7796(01)00138-9
- Zhinong, W., Xiaolu, L., Cheung, K. W., Jiang, W., and Shuaidong, H. (2013), A new short-term load forecasting model based on relevance vector machine, Electricity Distribution, 22nd International Conference and Exhibition on, 10-13.