References
- Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N. (2008), A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease, Neuroscience Letters, 444(2), 190-194. https://doi.org/10.1016/j.neulet.2008.08.008
- Barnard, J. P., Aldrich, C., and Gerber, M. (2001), Embedding of multidimensional time-dependent observations, Physical Review E, 64(4), 046201.
- Belkin, M. and Niyogi, P. (2002), Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering, In: T. G. Dietterich, S. Becker, and Z. Ghahramani. (eds), Advance in Neural Information Processing Systems, MIT Press, 585-591.
- Cao, L., Mees, A., and Judd, K. (1998), Dynamics from multivariate time series, Physica D: Nonlinear Phenomena, 121(1), 75-88. https://doi.org/10.1016/S0167-2789(98)00151-1
- Chen, D. and Han, W. (2013), Prediction of multivariate chaotic time series via radial basis function neural network, Complexity, 18(4), 55-66. https://doi.org/10.1002/cplx.21441
- Das, A. and Das, P. (2007), Chaotic analysis of the foreign exchange rates, Applied Mathematics and Computation, 185(1), 388-396. https://doi.org/10.1016/j.amc.2006.06.106
- Dhanya, C. and Kumar, D. N. (2011), Multivariate nonlinear ensemble prediction of daily chaotic rainfall with climate inputs, Journal of Hydrology, 403(3), 292-306. https://doi.org/10.1016/j.jhydrol.2011.04.009
- Dudul, S. V. (2005), Prediction of a Lorenz chaotic attractor using two-layer perceptron neural network, Applied Soft Computing, 5(4), 333-355. https://doi.org/10.1016/j.asoc.2004.07.005
- Fraser, A. M. and Swinney, H. L. (1986), Independent coordinates for strange attractors from mutual information, Physical Review A, 33(2), 1134. https://doi.org/10.1103/PhysRevA.33.1134
- Gholipour, A., Araabi, B. N., and Lucas, C. (2006), Predicting chaotic time series using neural and neurofuzzy models: a comparative study, Neural Processing Letters, 24(3), 217-239. https://doi.org/10.1007/s11063-006-9021-x
- Grassberger, P. and Procaccia, I. (2004), Measuring the strangeness of strange attractors, In: B. R. Hunt, J. A. Kennedy, T.-Y. Li and H. E. Nusse. (eds.), The Theory of Chaotic Attractors, Springer, 170-189.
- Han, M. and Wang, Y. (2009), Analysis and modeling of multivariate chaotic time series based on neural network, Expert Systems with Applications, 36(2), 1280-1290. https://doi.org/10.1016/j.eswa.2007.11.057
- Harding, A. K., Shinbrot, T., and Cordes, J. M. (1990), A chaotic attractor in timing noise from the VELA pulsar?, The Astrophysical Journal, 353, 588-596. https://doi.org/10.1086/168648
- He, X. and Niyogi, P. (2004), Locality preserving projections, In: S. Thrun, L. K. Saul and B. Scholkopf. (eds), In Advances in Neural Information Processing Systems 16, The MIT Press, Cambridge, USA, MA, 153-160.
- He, X., Cai, D., Yan, S., and Zhang, H.-J. (2005), Neighborhood preserving embedding, Proceedings of the Tenth IEEE International Conference on the Computer Vision (ICCV), 2, 1208-1213.
- Hotelling, H. (1933), Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, 24(6), 417- 441. https://doi.org/10.1037/h0071325
- Kennel, M. B., Brown, R., and Abarbanel, H. D. (1992), Determining embedding dimension for phase-space reconstruction using a geometrical construction, Physical Review A, 45(6), 3403-3411. https://doi.org/10.1103/PhysRevA.45.3403
- Lorenz, E. N. (1963), Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20(2), 130-141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
- Lorenz, E. N. (1995), The essence of chaos, University of Washington Press.
- Mackey, M. C. and Glass, L. (1977), Oscillation and chaos in physiological control systems, Science, 197(4300), 287-289. https://doi.org/10.1126/science.267326
- Mei-Ying, Y. and Xiao-Dong, W. (2004), Chaotic time series prediction using least squares support vector machines, Chinese Physics, 13(4), 454-458. https://doi.org/10.1088/1009-1963/13/4/007
- Monahan, A. H. (2000), Nonlinear principal component analysis by neural networks: Theory and application to the Lorenz system, Journal of Climate, 13(4), 821-835. https://doi.org/10.1175/1520-0442(2000)013<0821:NPCABN>2.0.CO;2
- Mukherjee, S., Osuna, E., and Girosi, F. (1997), Nonlinear prediction of chaotic time series using support vector machines, Proceedings of the 1997 IEEE Workshop of the Neural Networks for Signal Processing, 511-520.
- Roweis, S. T. and Saul, L. K. (2000), Nonlinear dimensionality reduction by locally linear embedding, Science, 290(5500), 2323-2326. https://doi.org/10.1126/science.290.5500.2323
- Shang, P., Li, X., and Kamae, S. (2005), Chaotic analysis of traffic time series, Chaos, Solitons and Fractals, 25(1), 121-128. https://doi.org/10.1016/j.chaos.2004.09.104
- Su, L.-y. (2010), Prediction of multivariate chaotic time series with local polynomial fitting, Computers and Mathematics with Applications, 59(2), 737-744. https://doi.org/10.1016/j.camwa.2009.10.019
- Suykens, J. A., De Brabanter, J., Lukas, L., and Vandewalle, J. (2002), Weighted least squares support vector machines: robustness and sparse approximation, Neurocomputing, 48(1), 85-105. https://doi.org/10.1016/S0925-2312(01)00644-0
- Takens, F. (1981), Detecting strange attractors in turbulence. In: D. A. Rand and L. S. Young (eds.), Dynamical Systems and Turbulence, Warwick 1980, Springer, Berlin, German, 366-381.
- Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000), A global geometric framework for nonlinear dimensionality reduction, Science, 290(5500), 2319-2323. https://doi.org/10.1126/science.290.5500.2319
- Torgerson, W. S. (1952), Multidimensional scaling: I. Theory and method, Psychometrika, 17(4), 401-419. https://doi.org/10.1007/BF02288916
- Van der Maaten, L. (2007), An introduction to dimensionality reduction using matlab, Report, 1201(07-07), 62.
- Vapnik, V. (2013), The nature of statistical learning theory, Springer Science and Business Media.
- Zhang, T., Yang, J., Zhao, D., and Ge, X. (2007), Linear local tangent space alignment and application to face recognition, Neurocomputing, 70(7), 1547-1553. https://doi.org/10.1016/j.neucom.2006.11.007
- Zhang, Z.-Y. and Zha, H.-Y. (2004), Principal manifolds and nonlinear dimensionality reduction via tangent space alignment, Journal of Shanghai University (English Edition), 8(4), 406-424. https://doi.org/10.1007/s11741-004-0051-1
- Zhi-Yong, Y., Guang, Y., and Cun-Bing, D. (2011), Timedelay feedback control in a delayed dynamical chaos system and its applications, Chinese Physics B, 20(1), 010207. https://doi.org/10.1088/1674-1056/20/1/010207
Cited by
- Data fusion combined with echo state network for multivariate time series prediction in complex electromechanical system pp.1807-0302, 2018, https://doi.org/10.1007/s40314-018-0669-4