DOI QR코드

DOI QR Code

The Relationships among Mathematics Achievement, Spatial Ability, and Verbal Achievement for Engineering Freshmen and Gender Differences

공과대학 신입생들의 공간 시각화 능력, 수학 성취도와 언어 성취도 사이의 관계 및 성별 차이에 관한 연구

  • Received : 2015.06.17
  • Accepted : 2015.09.18
  • Published : 2015.09.30

Abstract

Mathematical, verbal, and spatial abilities are known as three important indicators for the success in the STEM disciplines. In this study, Purdue Spatial Visualization Test-Rotation, College Entrance Scholastic Aptitude Test- Math and Verbal score of engineering freshmen students have been used to find the relationships among these areas. In addition, gender differences in spatial visualization, verbal achievement and mathematical achievement have been investigated, too. In this research, I found that gender difference was highest in spatial visualization ability, followed by verbal achievement and smallest in mathematical achievement. Substantial number of male students possess high level of spatial abilities, but only half of female students were at the same level where their male colleagues were. The correlation between spatial ability and mathematical ability was negligible, contrary to former researches on elementary and middle school students. But the correlation was stronger for female students than male students. The correlation between mathematical achievement and verbal achievement was negative. It reflects the fact that when one section of SAT score is low, score of other sections should be higher to get admitted to college. Gender difference in mathematics was smallest for high achieving spatial ability group. For low spatial ability group gender difference in mathematics achievement has been observed, too. To find the combined contribution of spatial and verbal abilities to mathematics achievement, students were divided into 4 ability groups. Mathematics achievement decreased in the order of (1) high spatial -low verbal group, (2) low spatial - low verbal group, (3) high spatial - high verbal group, (4) low spatial - high verbal group.

본 연구는 공간능력이 수학 성취도 및 STEM 분야의 성공에서 중요한 역할을 한다는 사실에 기초하여, 공과 대학생들의 공간능력, 수학 성취도, 그리고 언어 성취도 사이의 관계와 각 영역에서 성별 차이를 파악하는데 목적을 두었다. 그와 함께 수학 성취도에서의 성별 차이가 공간능력에서의 차이에 의해서 매개되는 지도 확인하고자 하였다. 이를 위하여 서울 소재 공과대학 신입생들에게 공간 시각화-회전(PSVT-R)검사를 실시한 후에 대학수학능력 시험의 수학 및 언어 영역과의 상관관계를 성별로 조사하였다. 연구 결과, 성별 차이는 공간 시각화 능력에서 가장 크게 나타났고, 다음이 언어 성취도, 그리고 수학 성취도의 순서로 낮아졌다. 남학생의 공간 시각화 능력이 여학생보다 0.8d(effect size) 정도 우수하였으며 남학생의 67%가 도달한 수준에 여학생은 34%가 속해있었다. 영역별 상관계수를 살펴보면 수학과 언어 성취도 사이에는 음의 상관관계가 존재하였다, 그러나 예측과는 다르게 수학 성취도와 공간 시각화 능력 사이의 상관관계는 작았다. 공간 시각화 능력과 언어 성취도 사이에도 상관관계는 존재하지 않았다. 그렇지만 공간 시각화 능력은 남학생보다는 여학생의 수학 성취도에 좀 더 강한 영향을 주는 것으로 나타났다. 그 이유는 남학생에서는 공간능력이 보편적인 현상이기 때문에 남학생 내에서는 공간능력이 수학 성취도에 별다른 영향을 미치지 않았던 것으로 파악된다. 그 외에도 공간능력이 낮은 집단에서도 수학 성취도에서는 성별차이가 나타나는 것을 확인하였다. 이것은 현 연구 집단에서는 공간능력이 수학 성취도를 결정하는 주된 요인은 아니라는 점을 보여준다. 언어 성취도가 수학 성취도와 음의 상관관계를 갖는 이유는 입시전형에 합격하기 위해서는 한 영역에서 낮은 점수를 받은 경우에 다른 영역의 점수는 상위권인 학생들이 지원한 결과로 해석된다. 마지막으로 공간 시각화와 언어 능력이 결합하여 수학 성취도에 미치는 영향을 살펴보았다. 언어 성취도와 공간 시각화 점수를 상위권과 하위권으로 구분한 다음 네 그룹으로 나누어서 수학 성취도를 비교하였다. 이 때 수학 성취도는 남학생, 여학생 모두에서 (1) 공간 상위권- 언어 하위권인 그룹, (2) 공간 하위권 - 언어 하위권인 그룹, (3) 공간 상위권 - 언어 상위권 그룹, (4) 공간 하위권 - 언어 상위권 그룹의 순서로 낮아졌다.

Keywords

References

  1. 박성선 (2013). 초등학생의 공간 시각화 능력 및 수학 성취도에 관한 연구, 한국수학교육학회 시리즈 C <초등수학 연구> 12(16), 303-313.(Park, S-S.(2013). Spatial ability and mathematics achievement of elementary school students, Journal of Korean society of mathematics education, series C, 12(16), 303)
  2. 한정혜 (2002) 논리적 사고력과 공간 시각화 능력이 수학 성취도에 미치는 영향: 인문계 고등학교 2학년을 대상으로, 이화여자 대학교 논문(Han, J-H(2002). The effect of ability logical thinking and the spatial visualization in the second year of high school students' achievements of mathematics, Thesis, Ewha Women's University: Seoul.)
  3. Akerman, P. L. (1988). Determinants of individual differences during skill acquisition: Cognitive abilities and information processing. Journal of Experimental Psychology, 117, 288 -318. https://doi.org/10.1037/0096-3445.117.3.288
  4. Alias, M., Black, T. R., & Gray, D. E. (2003). The relationship between spatial visualization ability and problem solving in structural design. World Transactions on Engineering and Technology Education, 2(2), 273-276.
  5. Barratt, E. (1953). An analysis of verbal reports of spatial problems as an aid in defining spatial factors, The Journal of Psychology, 36, 17-25. https://doi.org/10.1080/00223980.1953.9712874
  6. Benbow, C. P. (1988). Sex Differences in Mathematical Reasoning Ability in Intellectually Talented Pre adolescents: Their nature, effects, and possible causes, Behavioral and Brain Sciences, 11, 169-232. https://doi.org/10.1017/S0140525X00049244
  7. Bodner, G. M., & Guay, R. B. (1997). The Purdue visualization of rotations test. The Chemical Educator, 2(4), 1-18.
  8. Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697-705. https://doi.org/10.1037/0012-1649.31.4.697
  9. Ellison, G., & Swanson, A.(2010). The gender gap in secondary school mathematics at high achievement levels:Evidence from the American mathematics competition, Journal of Eonomic Prspectives, 24(2), 109-128. https://doi.org/10.1257/jep.24.2.109
  10. Fennema, E., & Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and boys. Journal for Research in Mathematics Education. 16(3), 184-206 https://doi.org/10.2307/748393
  11. French, J. (1965). The Relationship of Problem-Solving Styles to the Factor Composition of Tests, Educational and Psychological Measurement, 25, 9-28. https://doi.org/10.1177/001316446502500102
  12. Friedman, L. (1995). The Space Factor in Mathematics: Gender Differences. Review of Educational Research, 65(1), 22 - 50. https://doi.org/10.3102/00346543065001022
  13. Gallagher, A., Levin, J., & Cahalan, C. (2002). Cognitive Patterns of Gender Differences on Mathematics Admissions Tests. GRE Board Professional Report No. 96-17, Princeton, N.J.: Educational Testing Service.
  14. Gallagher, A. (1992). Sex Differences in Problem-Solving Strategies Used by High-Scoring Examinees on the SAT-M. The College Board Report No. 92-2, The College Board.
  15. Geary, D. (1999). Sex Differences in Mathematical Abilities: Commentary on the Math-Fact Retrieval Hypothessis. Contemporary Educational Psychology, 24, 267-274. https://doi.org/10.1006/ceps.1999.1007
  16. Greenagel, J. (2005). Engineering schools push stay-in-school programs. Retrieved from http://www.sia-online.org/pre_release.cfm?ID=363
  17. Hambrick, D. Z., & Meinz, E.J. (2011). Limits on the predictive power of domain-specific knowledge and experience for complex cognition. Current Directions in Psychological Science, 20, 275-279. https://doi.org/10.1177/0963721411422061
  18. Halpern, D. F. (2004). A Cognitive-process taxonomy for sex differences in cognitive abilities. Current Directions in Psychological Science, 13(4), 135-139. https://doi.org/10.1111/j.0963-7214.2004.00292.x
  19. Hedman, L., Strom, P., Andersson, P., Kjellin, A., Wredmark, T., & Fellander-Tsai, L. (2006). High-level visual-spatial ability for novices correlates with performance in a visual-spatial complex simulator task. Surgical Endoscopy, 20(8), 1275-1280. https://doi.org/10.1007/s00464-005-0036-6
  20. Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435-448 https://doi.org/10.1038/nrn1684
  21. Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92(1), 109-129. https://doi.org/10.1037/0033-295X.92.1.109
  22. Kroger J. K, Nystrom L. E, Cohen J. D, & Johnson-Laird P. N. (2008). Distinct neural substrates for deductive and mathematical processing. Brain Research, 124, 86-103.
  23. Kuhlenschmidt, S.(2006). My mother's response to stroke, retrieved from http://people.wku.edu/sally.kuhlenschmidt/stroke/
  24. Linn, M. C. & Peterson, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis, Child Development, 56, 479-498.
  25. Lippa, R., Collaer, M., & Peters, M. (2010). Sex differences in mental rotation and line angle judgments are positively associated with gender equality and economic development across 53 nations, Arch. Sex Behavior. 39. 990-997. https://doi.org/10.1007/s10508-008-9460-8
  26. Lohman, D. F. (1979). Spatial Ability: A Review and reanalysis of the correlational literature, in aptitude research project, Technical report No. 8, Aptitude Research Project; School of Education, Stanford University: Palo Alto, CA.
  27. Lubinski, D.(2010). Spatial ability and STEM: A sleeping giant for talent identification and development, Personality and Individual Differences, 49(4), 344-351. https://doi.org/10.1016/j.paid.2010.03.022
  28. McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889-918. https://doi.org/10.1037/0033-2909.86.5.889
  29. Neiderle, M., & Vesterlund, L. (2010). Explaining the gender gap in math test scores: The role of competition, Journal of Economic Perspectives, 24(2), 129-144. https://doi.org/10.1257/jep.24.2.129
  30. OECD (2014). PISA2012 Results: What students know and can do. Vol(1) PISA, Paris: OECD publishing.
  31. OECD (2003). Learning for tomorrow's world: First results from PISA 2003. Paris: OECD publishing..
  32. Pallrand, G. J., & Seeber, F. (1984). Spatial ability and achievement in introductory physics. Journal of Research in Science Teaching, 21(5), 507-516. https://doi.org/10.1002/tea.3660210508
  33. Robert, M; Chevrier, E (2003). Does men's advantage in mental rotation persist when real three-dimensional objects are either felt or seen?. Memory & Cognition 31(7), 1136-1145. https://doi.org/10.3758/BF03196134
  34. Rochford, K. (1985). Spatial learning disabilities and underachievement among university anatomy students, Medical Education, 19, 13-26. https://doi.org/10.1111/j.1365-2923.1985.tb01134.x
  35. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701 - 703. https://doi.org/10.1126/science.171.3972.701
  36. Smith, M. (2009). The correlation between a pre-engineering student's spatial ability and achievement in an electronics fundamentals course(Unpublished doctoral thesis), Utah State University, USA
  37. Sorby, S. A. (2001). Improving the spatial skills of engineering students: Impact on graphics performance and retention. Engineering Design Graphics Journal, 65(3), 31-36.
  38. Sorby, S. A., & Baartmans, B. J. (1996). A course for the development of 3-D spatial visualization skills. Engineering Design Graphics Journal, 60(1), 13-19.
  39. Stoet, G. & Geary, D. (2013). Sex differences in reading and mathematics are inversely related: within and across nation assessment of 10 years of PISA data. PLOS one, 8(3), e57988. https://doi.org/10.1371/journal.pone.0057988
  40. Strong, S., & Smith, R. (2001). Spatial visualization: Fundamentals and trends in engineering graphics. Journal of Industrial Technology, 18(1), 2-6.
  41. Tai, D. W. S., Yu, C. H., Lai, L. C., & Lin, S. J. (2003). A study on the effects of spatial ability in promoting the logical thinking abilities of students with regard to programming language. World Transactions on Engineering and Technology Education, 2(2), 251-254.
  42. Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education, 21(3), 216-229. https://doi.org/10.2307/749375
  43. Tolar, T. D., Lederberg, A., & Fletcher, J. (2009). A structural model of algebra achievement: computational fluency and spatial visualization as mediators of the effect of working memory on algebra achievement. Educational Psychology, 29(2), 239-266. https://doi.org/10.1080/01443410802708903
  44. Tsui, M., Vanator, E., & Xiaoying, X.(2014). Mental rotation performance of chinese male and female university students, Chinese Studies, 3, 41-46. https://doi.org/10.4236/chnstd.2014.32007
  45. Turgut, M., & Yilmaz, S. (2012). Relationships among pre-service primary mathematics teachers' gender, academic success, and spatial ability, International Journal of Instruction, 5(2), 5-20.
  46. Uttal, D., & Cohen, C. (2012). Spatial thinking and Stem education, when why, and how? Psychology of Learning and Motivation, 57, 147-190. https://doi.org/10.1016/B978-0-12-394293-7.00004-2
  47. Wai, J. Lubinski, D. & Benbow, C. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance, Journal of educational psychology, 101(4), 817-835. https://doi.org/10.1037/a0016127

Cited by

  1. Relative Spectral Power Analysis of EEG Activity during Actions Involving Number Sense and Spatial Ability vol.29, pp.4, 2019, https://doi.org/10.29275/jerm.2019.11.29.4.805