DOI QR코드

DOI QR Code

Cellulase Activity of Symbiotic Bacteria from Snails, Achatina fulica

  • Kim, Jon Young (CheongShim International Academy) ;
  • Yoon, Sae Min (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Kim, Yeong-Suk (Department of Forest Products and Biotechnology, Kookmin University)
  • Received : 2015.03.10
  • Accepted : 2015.04.28
  • Published : 2015.09.25

Abstract

Cellulase is the key enzyme in the use of cellulose-based biomaterials. Because of its structure, cellulose is difficult to be degraded by enzymes. In order to utilize cellulose-based biomaterials efficiently, evolutionary wisdom of how to use enzymes accurately and harmoniously in a biological system is needed, such as the cellulose digestive system in animals. In this study, the symbiotic bacteria from snails, Achatina fulica, were identified and their cellulase activity was evaluated. The 16S rRNA sequence analysis of 100 aerobic bacteria showed that they belonged to 9 genus and almost half of the bacteria were Lactococcus spp. Among 100 identified strains, only two Aeromonas sp. strains showed cellulase activity. Aeromonas sp. KMBS020 had both endo-${\beta}$-glucanase and ${\beta}$-glucosidase activities but Aeromonas sp. KMBS018 had ${\beta}$-glucosidase activity only. None of the 100 bacterial colonies had any cellobiohydrolase activity.

Keywords

References

  1. Ahmad, B., Nigar, S., Shah, S.S.A., Bashir, S., Ali, J., Yousaf, S., Bangash, J.A. 2013. Isolation and identification of cellulose degrading bacteria from municipal waste and their screening for potential antimicrobial activity. World Applied Sciences Journal 27(11): 1420-1426.
  2. Cardoso, A.M., Cavalcante, J.J.V., Vieira, R.P., et al. 2012. Gut bacterial communities in the giant kand snail Achatina fulica and their modification by sugarcane-based diet. PLOS ONE 7(3): e33440. https://doi.org/10.1371/journal.pone.0033440
  3. Cardoso, A.M., Cavalcante, J.J.V., Cantao, M.E., et al. 2012. Metagenomic analysis of the microbiota from the crop of an invasive snail reveals a rich reservoir of novel genes PLOS ONE 7(11): 1-12.
  4. Charrier, M., Fonty, G., Gaillard--Martinie, B., Ainouche, K., Andant, G. 2006. Isolation and characterization of cultivable fermentative bacteria from the intestine of two edible snails, Helix pomatia and Cornu aspersum (Gastropoda: Pulmonata). Biological Research 39: 669-681.
  5. Cho, M.-J., Kim, Y.-H., Shin, K., Kim, Y.-K., Kim, Y.-S., Kim, T.-J. 2010. Symbiotic adaptation of bacteria in the gut of Reticulitermes speratus: Low endo-${\beta}$-1,4-glucanase activity. Biochemical and Biophysical Research Communications 395(3): 432-435. https://doi.org/10.1016/j.bbrc.2010.04.048
  6. Dean, W.W., Mead, A.R., Northey, W.T. 1970. Aeromonas liquefaciens in the giant African snail, Achatina fulica. Journal of Invertebrate Pathology 16(3): 346-351. https://doi.org/10.1016/0022-2011(70)90150-3
  7. Ducklow, H., Clausen, K., Mitchell, R. 1981. Ecology of bacterial communities in the schistosomiasis vector snail Biomphalaria glabrata. Microbial Ecology 7(3): 253-274. https://doi.org/10.1007/BF02010308
  8. Ducklow, H.W., Boyle, P.J., Maugel, P.W., Strong, C., Mitchell, R. 1979. Bacterial flora of the schistosome vector snail Biomphalaria glabrata. Applied and Environmental Microbiology 38(4): 667-672.
  9. Guo, R., Ding, M., Zhang, S.-L., Xu, G.-j., Zhao, F.-k. 2008. Molecular cloning and characterization of two novel cellulase genes from the mollusc Ampullaria crossean. Journal of Comparative Physiology B 178(2): 209-215. https://doi.org/10.1007/s00360-007-0214-z
  10. Gupta, P., Samant, K., Sahu, A. 2012. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. International Journal of Microbiology 2012(Article ID 578925): 1-5.
  11. Igbinosa, I.H., Igumbor, E.U., Aghdasi, F., Tom, M., Okoh, A.I. 2012. Emerging Aeromonas species infections and their significance in public health. The Scientific World Journal 2012(Article ID 625023): 1-13.
  12. Imjongjirak, C., Amparyup, P., Sittipraneed, S. 2008. Cloning, genomic organization and expression of two glycosyl hydrolase family 10 (GHF10) genes from golden apple snail (Pomacea canaliculata). DNA Sequence 19(3): 224-236. https://doi.org/10.1080/10425170701517911
  13. Jiang, Y., Xie, C., Yang, G., Gong, X., Chen, X., Xu, L., Bao, B. 2011. Cellulase-producing bacteria of Aeromonas are dominant and indigenous in the gut of Ctenopharyngodon idellus (Valenciennes). Aquaculture Research 42(4): 499-505. https://doi.org/10.1111/j.1365-2109.2010.02645.x
  14. Kiebre-Toe, M.B., Lacheretz, A., Villard, L., Richard, Y., Kodjo, A. 2005. Pulsed-field gel electrophoresis profiles of aeromonads isolated from healthy and diseased Helix aspersa from French snail farms. Canadian Journal of Microbiology 51(9): 817-820. https://doi.org/10.1139/w05-064
  15. Kodjo, A., Haond, F., Richard, Y. 1997. Molecular and phenotypic features of aeromonads isolated from snails (Helix aspersa) affected with a new summer disease. Journal of Veterinary Medicine Series B 44(1-10): 245-252. https://doi.org/10.1111/j.1439-0450.1997.tb00970.x
  16. Kubata, B.K., Suzuki, T., Horitsu, H., Kawai, K., Takamizawa, K. 1994. Purification and characterization of Aeromonas caviae ME-1 xylanase V, which produces exclusively xylobiose from xylan. Applied and Environmental Microbiology 60(2): 531-535.
  17. Muller, H.E., Brenner, D.J., Fanning, G.R., Grimont, P.A.D., Kampfer, P. 1996. Emended description of Buttiauxella agrestis with recognition of six new species of Buttiauxella and two new species of Kluyvera: Buttiauxella ferragutiae sp. nov., Buttiauxella gaviniae sp. nov., Buttiauxella brennerae sp. nov., Buttiauxella izardii sp. nov., Buttiauxella noackiae sp. nov., Buttiauxella warmboldiae sp. nov., Kluyvera cochleae sp. nov., and Kluyvera georgiana sp. nov. International Journal of Systematic Bacteriology 46(1): 50-63. https://doi.org/10.1099/00207713-46-1-50
  18. Maeda, I., Shimohigashi, Y., Kihara, H., Ohno, M. 1996. Purification and characterization of a cellulase from the giant snail Achatina fulica. Bioscience, Biotechnology, and Biochemistry 60(1): 122-124. https://doi.org/10.1271/bbb.60.122
  19. Munoz, C., Hidalgo, C., Zapata, M., Jeison, D., Riquelme, C., Rivas, M. 2014. Use of cellulolytic marine bacteria for enzymatic pretreatment in microalgal biogas production. Applied and Environmental Microbiology 80(14): 4199-4206. https://doi.org/10.1128/AEM.00827-14
  20. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. The Journal of Biological Chemistry 153(2): 375-380.
  21. Nwiyi, P., Amaechi, N. 2013. Prevalence of enteric bacteria isolates from aquarium snail (Ampullaria spp.) in Abia state, Nigeria. Online Journal of Animal and Feed Research 3(1): 77-79.
  22. Obi, S., Nzeako, B. 1980. Salmonella, Arizona, Shigella and Aeromonas isolated from the snail Achatina achatina in Nigeria. Antonie van Leeuwenhoek 46(5): 475-481. https://doi.org/10.1007/BF00395828
  23. Ohya, T., Yokoi, N., Mase, T. 1976. Process for preparatio of cellulase. United State Patent number: 3983002.
  24. Oyeleke, S.B., Egwim, E.C., Oyewole, O.A., John, E.E. 2012. Production of cellulase and protease from microorganisms isolated from gut of Archachatina marginata (giant african snail). SciTechnol 2(1): 15-20.
  25. Pawar, K.D., Banskar, S., Rane, S.D., Charan, S.S., Kulkarni, G.J., Sawant, S.S., Ghate, H.V., Patole, M.S., Shouche, Y.S. 2012. Bacterial diversity in different regions of gastrointestinal tract of Giant African Snail (Achatina fulica). Microbiology Open 1(4): 415-426. https://doi.org/10.1002/mbo3.38
  26. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725-2729. https://doi.org/10.1093/molbev/mst197
  27. Teng, Y., Yin, Q., ding, M., Zhao, F. 2010. Purification and characterization of a novel endo-${\beta}$-1,4-glucanase, AfEG22, from the giant snail, Achatina fulica frussac. Acta Biochimica et Biophysica Sinica 42(10): 729-734. https://doi.org/10.1093/abbs/gmq083
  28. Van Horn, D.J., Garcia, J.R., Loker, E.S., Mitchell, K.R., Mkoji, G.M., Adema, C.M., Takacs-Vesbach, C.D. 2012. Complex intestinal bacterial communities in three species of planorbid snails. Journal of Molluscan Studies 78(1): 74-80. https://doi.org/10.1093/mollus/eyr038
  29. Yoon, J.-J., Kim, Y.-K. 2005. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. The Journal of Microbiology 43(6): 487-492.
  30. Yoon, J., Cha, C., Kim, Y., Son, D., Kim, Y. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. Journal of Microbiology and Biotechnology 17(5): 800-805.