DOI QR코드

DOI QR Code

Phenolic Glycosides from Cercidiphyllum japonicum Leaves

  • Lee, Tae-Seong (Samcheok City Agricultural Technology and Extension Center) ;
  • Min, Hee-Jeong (Department of Forest Biomaterials Engineering, College of Forest and Environment Sciences, Kangwon National University) ;
  • Bae, Young-Soo (Department of Forest Biomaterials Engineering, College of Forest and Environment Sciences, Kangwon National University)
  • Received : 2015.03.23
  • Accepted : 2015.06.02
  • Published : 2015.09.25

Abstract

Cercidiphyllum japonicum leaves were collected, air-dried and extracted with 70% aqueous acetone, then concentrated and sequentially fractionated using n-hexane, methylene chloride ($CH_2Cl_2$), ethylacetate (EtOAc), and $H_2O$. A portion of EtOAc fraction (10 g) was chromatographed on a Sephadex LH-20 column, by the successively elution with various aqueous $MeOH-H_2O$ (1:9, fraction $1-2{\rightarrow}3:7$, fraction $3-5{\rightarrow}1:1$, fraction $6-9{\rightarrow}7:3$, fraction $10-13{\rightarrow}9:1$, fraction 14-16). Compound 2 was isolated from fraction 6 and compound 1 was separated from fraction 11 and 12. Compound 3 and 4 were purified from fraction 13. The isolated compounds were elucidated as quercetin-3-O-${\alpha}$-L-rhamnopyranoside (1), chlorogenic acid (2), quercetin-3-O-${\alpha}$-L-arabinofuranoside (3) and quercetin-3-O-${\beta}$-D-xylopyranoside (4) by the spectral and literature data, and by comparison with the authentic samples. These compounds were reported, for the first time, from the extracts of C. japonicum leaves. Also chlorogenic acid (2) has never been reported before in domestic tree species and can be used as an index compound for C. japonicum.

Keywords

References

  1. Agrawal, P.K. 1989. Carbon-13 NMR of flavonoids, Elsevier, pp. 150-157.
  2. Bergeron, C., Marston, A., Antus, S., Gauthier, R., Hostettmann, K. 1998. Flavonoids from Pyrola elliptica. Phytochemistry 49(1): 233-236. https://doi.org/10.1016/S0031-9422(97)00878-9
  3. Cheminar, A., Zawatzky, R., Becker, H., Brouillard R. 1988. Caffeoyl conjugates from Echinacea species: Structure and biological activity. Phytochemistry 27: 2787-2794. https://doi.org/10.1016/0031-9422(88)80664-2
  4. Dawidar, A-A. M., Mamdouh, A-M., Mahmoud, E. E-N., Mohamed, E.M. 2014. Isolation and characterization of Polygonum eqisetiforme flavonoids and their acaricidal activity against Tetranychus urticae Koch. Research J. of Pharmaceutical, Biological and Chemical Sciences 5(4): 140-148.
  5. Dey, P.M., Harborne, J.B. 1989. Methods in plant biochemistry. Vol. I. Plant phenolics, Academic press, London, pp. 75-111.
  6. Dubeler, A., Voltmer, G., Gora, V., Lunderstadt, J., Zeeck, A. 1997. Phenols from Fagus sylvatica and their role in defence against Cryptococcus fagisuga. Phytochemistry 45(1): 51-57. https://doi.org/10.1016/S0031-9422(96)00771-6
  7. Guo, J., Yu, D.L., Xu, L., Zhu, M., Yang, S.L. 1998. Flavonol glycosides from Lysimachia congestiflora. Phytochemistry 48(8): 1445-1447. https://doi.org/10.1016/S0031-9422(97)01025-X
  8. Han, J.T., Bang, M.H., Chun, O.K., Kim, D.O., Lee, C.Y., Baek, N.I. 2004. Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Archives of Pharmacal Research 27(4): 390-395. https://doi.org/10.1007/BF02980079
  9. Harborne, J.B., Mabry, T.J. 1982. The flavonoids: advances in research. Chapman and Hall Ltd., pp. 19-45.
  10. Hyun, S.K., Jung, H.A., Min, B.S., Jung, J.H., Choi, J.S. 2010. Isolation of phenolics, nucleosides, saccharides and an alkaloid from the root of Aralia cordata. Natural Product Sciences 16(1): 20-25.
  11. Isagi, Y., Kudo, M., Osumi, K., Sato, K., Sakio, H. 2005. Polymorphic microsatellite and markers for a relictual angiosperm Cercidiphyllum japonicum Sieb. et Zucc. and their utility for Cercidiphyllum magnificum. Molecular Ecology Notes 5: 596-598. https://doi.org/10.1111/j.1471-8286.2005.01006.x
  12. Kador, P.F., Robison, W.G., Kinoshita, J.H. 1985a. The pharmacology of aldose reductase inhibitors. Annual Review Pharmacology, Toxicology 25: 691-714. https://doi.org/10.1146/annurev.pa.25.040185.003355
  13. Kador, P.J., Konishita, J.H., Sharpless, N.E. 1985b. Aldose reductase inhibitors: a potential new class of agents for the pharmacological control of certain diabetic complications. Journal of Medicinal Chemistry 28: 841-849. https://doi.org/10.1021/jm00145a001
  14. Kim, J.K., Park, W.G., Bae, Y.S. 1997. Flavonoid glycosides from needles of Larix leptolepis (Pinaceae). Journal of Korean Wood Science and Technology 25(2): 81-87.
  15. Kim, J.K., Lee, S.K., Ham, Y.H., Bae, Y.S. 2002. Extractives from the barks of Quercus acutissima and Quercus variabilis. Journal of Korean Forest Energy 21(1): 41-48.
  16. Kwon, D.J., Kim, J.K., Ham, Y.H., Bae, Y.S. 2007. Flavone glycosides from the aerial parts of Lespedza cuneata G. Don. J. of Applied Biological Chemistry 50(4): 344-347.
  17. Lee, J.H., Chung, H.K., Baek, N.I., Kim, S.H., Hee, W.P., Dae, K.K. 2004. Phytochemical constituents from Diodia teres. Archives of Pharmacal Research 27(1): 40-43. https://doi.org/10.1007/BF02980043
  18. Luo, W., Zhao, M., Yang, B., Shen, G., Rao, G. 2009. Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities. Food Chemistry 114(2): 499-504. https://doi.org/10.1016/j.foodchem.2008.09.077
  19. Manchester, S.R., Chen, Z.D., Lu, A.M., Uemura, K. 2009. Eastern asian endemic seed plant genera and their paleogeographic history throughout the northern hemisphere. Journal of Systematics and Evolution 47: 1-42. https://doi.org/10.1111/j.1759-6831.2009.00001.x
  20. Markham, K.R. 1982. Techniques of flavonoid identification. Academic press. London, UK. pp. 87-90.
  21. Pyo, M.K., Koo, Y.K., Yun-Choi, H.S. 2002. Anti-platelet effect of the phenolic constituents isolated from the leaves of Magnolia obovata. Natural Product Sciences 8(4): 147-151.
  22. Tada, M., Sakurai, K. 1991. Antimicrobial compound from Cercidiphyllum japonicum. Phytochemistry 30(4): 1119-1120. https://doi.org/10.1016/S0031-9422(00)95184-7
  23. Takasugi, M., Katui, N. 1986. A biphenyl phytoalexin from Cercidiphyllum japonicum. Phytochemistry 25(12): 2751-2752. https://doi.org/10.1016/S0031-9422(00)83734-6
  24. Towatari, K., Yoshida, K., Mori, N., Shimizu, K., Kondo, R., Sakai K. 2002. Polyphenols from the heartwood of Cercidiphyllum japonicum and their effects on proliferation of mouse hair epithelial cells. Planta Medica 68: 995-998. https://doi.org/10.1055/s-2002-35657
  25. Williamson, J., Kilo, C., Tilton, R.G. 1992. Mechanism of glucose and diabetes-induced vascular dysfunction. In N. Ruderman, J. Brownlee and J. Williamson (eds.), hyperglycemia, diabetes, and vascular disease. American physiology society. New York, pp. 107-132.
  26. Zhang, X.Y., Yuan, X.Y., Ma, J., Yuan, L.J. 2009. Research on tissue culture and regeneration of Ceridiphyllum japonicum. Northern horticulture (9): 77-79.

Cited by

  1. Extractives of Cercidiphyllum japonicum twigs: isolation and structural elucidation of a new galloylflavonol glycoside, anomeric tannins and flavonoids vol.72, pp.9, 2018, https://doi.org/10.1515/hf-2018-0029
  2. Chemical Constituents of the Flowers of Cercidiphyllum japonicum pp.1573-8388, 2019, https://doi.org/10.1007/s10600-019-02638-2