Acknowledgement
Supported by : 한국연구재단
References
- Adomian, G., & Rach, R. (1992). Generalization of adomian polynomials to functions of several variables. Computers & mathematics with Applications, 24, 11-24.
- Alnasr, M., & Erjaee, G. (2011). Application of the multistage homotopy perturbation method to some dynamical systems. International Journal of Science & Technology, A1, 33-38.
- Ario, I. (2004). Homoclinic bifurcation and chaos attractor in elastic two-bar truss. International Journal of Non-Linear Mechanics, 39(4), 605-617. https://doi.org/10.1016/S0020-7462(03)00002-7
- Barrio, R., Blesa, F., & Lara, M. (2005). VSVO formulation of the Taylor method for the numerical solution of ODEs. Computers & mathematics with Applications, 50, 93-111. https://doi.org/10.1016/j.camwa.2005.02.010
- Bi, Q., & Dai, H. (2000). Analysis of non-linear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance, Journal of Sound and Vibration, 233(4), 557-571.
- Blair, K., Krousgrill, C., & Farris, T. (1996). Non-linear dynamic response of shallow arches to harmonic forcing. Journal of Sound and Vibration, 194(3), 353-367. https://doi.org/10.1006/jsvi.1996.0363
- Blendez, A., & Hernandez, T. (2007). Application of He's homotopy perturbation method to the doffing-harmonic oscillator. International Journal of Nonlinear Science and Numerical Simulation, 8(1), 79-88. https://doi.org/10.1515/IJNSNS.2007.8.1.79
- Budiansky, B., & Roth, R. (1962). Axisymmetric dynamic buckling of clamped shallow spherical shells; Collected papers on instability of shells structures. NASA TN D-1510, Washington DC, 597-606.
- Chen, J., & Li, Y. (2006). Effects of elastic foundation on the snap-through buckling of a shallow arch under a moving point load. International Journal of Solids and Structures, 43, 4220-4237. https://doi.org/10.1016/j.ijsolstr.2005.04.040
- Chowdhury, M., & Hashim, I. (2008). Analytical solutions to heat transfer equations by homotopy perturbation method revisited. Physics Letters A, 372, 1240-1243. https://doi.org/10.1016/j.physleta.2007.09.015
- Chowdhury, M., Hashim, I., & Abdulaziz, O. (2007). Application of homotopy perturbation method to nonlinear population dynamics models. Physics Letters A, 368, 251-258. https://doi.org/10.1016/j.physleta.2007.04.007
- Chowdhury, M., Hashim, I., & Momani, S. (2009). The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system. Chaos Solitons & Fractal, 40, 1929-1937. https://doi.org/10.1016/j.chaos.2007.09.073
- Chowdhury, S. (2011). A Comparison between the modified homotopy perturbation method and adomain decomposition method for solving nonlinear heat transfer equations. Journal of Applied Sciences, 11(8), 1416-1420. https://doi.org/10.3923/jas.2011.1416.1420
- Compean, F., Olvera, D., Campa, F., Lopez, L., Elias-Zuniga, A., & Rodriguez C. (2012). Characterization and stability analysis of a multivariable milling tool by the enhanced multistage homotopy perturbation method. International Journal of Machine Tools & Manufacture, 57, 27-33. https://doi.org/10.1016/j.ijmachtools.2012.01.010
- De Rosa, M., & Franciosi, C. (2000). Exact and approximate dynamic analysis of circular arches using DQM. International Journal of Solids and Structures, 37, 1103-1117. https://doi.org/10.1016/S0020-7683(98)00275-3
- Ganji, D. (2006). The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer. Physics Letters A, 355, 337-341. https://doi.org/10.1016/j.physleta.2006.02.056
- Ha, J., Gutman, S., Shon, S., & Lee S. (2014). Stability of shallow arches under constant load. International Journal of Non-Linear Mechanics, 58, 120-127. https://doi.org/10.1016/j.ijnonlinmec.2013.08.004
- He, J. (1999). Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178, 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
- He, J. (2004). The homotopy perturbation method for nonlinear oscillators with discontinuities. Applied Mathematics and Computation, 151, 287-292. https://doi.org/10.1016/S0096-3003(03)00341-2
- He, J. (2005). Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons & Fractals, 26, 695-700. https://doi.org/10.1016/j.chaos.2005.03.006
- Jianmin, W., & Zhengcai, C. (2007). Sub-harminic resonances of nonlinear oscillations with parametric excitation by means of the homotopy analysis method. Physics Letters A, 371, 427-431. https://doi.org/10.1016/j.physleta.2007.09.057
- Kim, S., Kang, M., Kwun, T., & Hangai, Y. (1997). Dynamic instability of shell-like shallow trusses considering damping. Computers and Structures, 64, 481-489. https://doi.org/10.1016/S0045-7949(96)00141-1
- Lacarbonara, W., & Rega, G. (2003). Resonant nonlinear normal modes-part2: activation/ orthogonality conditions for shallow structural systems. International Journal of Non-linear Mechanics, 38, 873-887. https://doi.org/10.1016/S0020-7462(02)00034-3
- Lin, J., & Chen, J. (2003). Dynamic snap-through of a laterally loaded arch under prescribed end motion. International Journal of Solids and Structures, 40, 4769-4787. https://doi.org/10.1016/S0020-7683(03)00181-1
- Rashidi, M., Shooshtari, A., & Anwar Beg, O. (2012). Homotopy perturbation study of nonlinear vibration of Von Karman rectangular plates. Computers and Structures, 106-107, 46-55. https://doi.org/10.1016/j.compstruc.2012.04.004
- Sadighi, A., Ganji, D., & Ganjavi, B. (2007). Travelling wave solutions of the sine-gordon and the coupled sine-gordon equations using the homotopy perturbation method. Scientia Iranica Transaction B: Mechanical Engineering, 16(2), 189-195.
- Shon, S., Ha, J., & Lee, S. (2012). Nonlinear dynamic analysis of space truss by using multistage homotopy perturbation method. Journal of Korean Society for Noise and Vibration Engineering, 22(9), 879-888. https://doi.org/10.5050/KSNVE.2012.22.9.879
- Shon, S., Lee, S., & Lee, K. (2013). Characteristics of bifurcation and buckling load of space truss in consideration of initial imperfection and load mode. Journal of Zhejiang University-SCIENCE A, 14(3), 206-218. https://doi.org/10.1631/jzus.A1200114
- Shon, S., & Lee, S. (2015). Semi-analytical solution of shallow sinusoidal arches by using multistage homotopy perturbation method. Journal of Architectural Institute of Korea Structure & construction, 31(4), 21-28. https://doi.org/10.5659/JAIK_SC.2015.31.4.21
- Shon, S., Lee, S., Ha, J., & Cho, G. (2015). Semi-analytic solution and stability of a space truss using a multi-step Taylor series method. Materials, 8(5), 2400-2414. https://doi.org/10.3390/ma8052400
- Wang, S., & Yu, Y. (2012). Application of multistage homotopy perturbation Method for the solutions of the chaotic fractional order systems. International Journal of Nonlinear Science, 13(1), 3-14.
- Yu, Y., & Li, H. (2009). Application of the multistage homotopy perturbation method to solve a class of hyperchaotic systems. Chaos, Solitons and Fractals, 42, 2330-2337. https://doi.org/10.1016/j.chaos.2009.03.154