
데이터베이스 압축 성능 향상을 위한 선택적 압축 전략 371

A Selective Compression Strategy for Performance Improvement of

Database Compression

Ki-Hoon Lee†

ABSTRACT

The Internet of Things (IoT) significantly increases the amount of data. Database compression is important for big data because it can

reduce costs for storage systems and save I/O bandwidth. However, it could show low performance for write-intensive workloads such as

OLTP due to the updates of compressed pages. In this paper, we present practical guidelines for the performance improvement of database

compression. Especially, we propose the SELECTIVE strategy, which compresses only tables whose space savings are close to the

expected space savings calculated by the compressed page size. Experimental results using the TPC-C benchmark and MySQL show that

the strategy can achieve 1.1 times better performance than the uncompressed counterpart with 17.3% space savings.

Keywords: Database Compression, Performance Improvement, OLTP, TPC-C

데이터베이스 압축 성능 향상을 위한 선택적 압축 전략

이 기 훈†

요 약

사물인터넷 (IoT)은 데이터의 양을 상당히 증가시킨다. 데이터베이스 압축은 저장 시스템 비용과 I/O 대역폭을 절약할 수 있기 때문에 빅데

이터에 있어서 중요하다. 그러나 데이터베이스 압축은 압축된 페이지에 대한 업데이트로 인해 OLTP와 같은 쓰기 집중적인 워크로드에 대해

낮은 성능을 보일 수 있다. 본 논문에서는 데이터베이스 압축의 성능 향상을 위한 실용적 가이드라인을 제시한다. 특히, 압축 페이지 크기에 의

한 계산으로부터 예상되는 공간 절약과 거의 같은 공간 절약을 보이는 테이블들만을 압축하는 SELECTIVE 전략을 제시한다. TPC-C 벤치마

크와 MySQL을 이용한 실험을 통해 SELECTIVE 전략이 압축하지 않는 방법에 비해 1.1배 높은 성능을 보이면서 17.3%의 공간을 절약한다는

것을 보였다.

키워드: 데이터베이스 압축, 성능 향상, OLTP, TPC-C

KIPS Tr. Software and Data Eng.
Vol.4, No.9 pp.371~376 pISSN: 2287-5905

1. Introduction1)

Compression is especially important for big data because

we can substantially reduce database storage cost and

save I/O bandwidth. However, it is generally known that

database compression is not suitable for write-intensive

workloads like OLTP [1,2]. The main reason is that

updates of compressed pages incur many page splits,

which require exclusive locks [1]. Furthermore, updates

※ 이 논문은 2015년도 정부(미래창조과학부)의 재원으로 한국연구재단의
지원을 받아 수행된 기초연구사업임(No. NRF-2015R 1C 1A 1A02036517).

※ 이 논문은 2014년도 광운대학교 교내 학술연구비 지원에 의해 연구되었음.
†정 회 원 :광운대학교 컴퓨터공학과 조교수
Manuscript Received : July 28, 2015
Accepted : August 24, 2015

* Corresponding Author: Ki-Hoon Lee(kihoonlee@kw.ac.kr)

require page reorganization and recompression, which

consume CPU cycles.

 Due to the complexity of real systems, the tuning of

database compression for OLTP workloads is difficult and

time-consuming. It depends on many factors such as the

compressed page size, workload characteristics, tables to

compress, and storage device types [3]. In this paper, we

provide comprehensive guidelines for tuning database

compression. Our guidelines do not need any database

engine modifications, and thus, can offer benefits to the

millions of already-deployed systems. One of the most

important guidelines, the SELECTIVE strategy, is that we

should compress only tables whose space savings are

similar to the expected space savings calculated by the

http://dx.doi.org/10.3745/KTSDE.2015.4.9.371

372 정보처리학회논문지/소프트웨어 및 데이터 공학 제4권 제9호(2015. 9)

compressed page size. We focus on MySQL because it is

the world's most widely used open-source DBMS with

millions of users. We conduct extensive experiments using

the TPC-C benchmark [4] and MySQL InnoDB [3], and

the results show that by applying the guidelines we can

reduce storage space without performance degradation.

The remainder of this paper is organized as follows.

Section 2 reviews related work. Section 3 introduces database

compression. Section 4 proposes compression strategies, and

Section 5 presents an experimental evaluation of the proposed

compression strategies and discussions. Finally, Section 6

provides some concluding remarks.

2. Related Work

Poess and Potapov [2] have presented compression

techniques used in Oracle for read-only workloads.

Bhattacharjee et al. [5] have introduced index compression

techniques used in DB2. Ordulu and Tolmer [6] have

proposed the adaptive padding method to reduce the

compression overhead for insert-intensive workloads.

Recently, Lee [1] has improved the performance of database

compression for OLTP workloads by avoiding lock

contention. These techniques need modification of DBMS

engines. In contrast, our work focuses on tuning database

compression without any engine modification. Thus, our

work is easily applicable to the millions of already-deployed

MySQL database systems.

3. Database Compression

A table in MySQL InnoDB is stored as a B+-tree

index [3]. InnoDB uses zlib [7] to compress tables and

indexes [3]. The page size of an uncompressed table is

16KB, but a compressed table can use a smaller page

size (1KB, 2KB, 4KB, or 8KB) [3]. The same compressed

page size is used for a table and all of its indexes [3].

When a page cannot be compressed to the compressed

page size, InnoDB splits the page and recompresses the

splitted pages. The optimal size of the compressed page

depends on the data type and distribution [3]. If the

compressed page size is larger than the actual size of the

compressed data in the page, some space is wasted, but

the compressed page is rarely splitted and recompressed

for updates [3]. If the compressed page size is too small,

updates may incur page splits and recompression,

resulting in low concurrency, more space consumption,

and more CPU overhead [3].

4. Compression Strategies

We propose two strategies for choosing which tables

to compress: ALL and SELECTIVE. We define the space

savings (SS) according to literature [2, 8] in Formula (1).


 

   
× (1)

The ALL strategy simply compresses all the tables.

The SELECTIVE strategy compresses only tables whose

space savings Tss are close to the expected space savings

CPss calculated by the compressed page size. Here, CP

denotes “Compressed Page”. This means that most of the

uncompressed pages of those tables successfully compress

to the compressed page size without incurring page splits.

We say Tss is δ-close to CPss if (1-δ)CPss ≤ Tss ≤

CPss where 0 ≤ δ ≤ 1. For example, when the

compressed page size is 8KB and the uncompressed page

size is 16KB, i.e., CPss = 50%, the SELECTIVE strategy

chooses tables whose space savings 45% ≤ Tss ≤ 50%

when δ = 0.1.

According to Lee [1], if data is too densely stored in

compressed pages, page splits will be often incurred by

updates. Page splitting lock the whole index in exclusive

mode and lead to low concurrency. Suppose that an update

of a record increases the compressed size of the record. Due

to the increased size of the record, a compression failure

likely happens if the compressed page is already almost full

before updating. In this case, we should perform updates

with exclusive lock because page splitting can occur. The

SELECTIVE strategy reduces page splits for updates by

sacrificing space savings. Since it compresses only tables

that are compressed well, enough free space for the update

is usually available in the compressed page, and updates do

not incur page splits in most cases. Furthermore, the

SELECTIVE strategy has less compression/decompression

overhead because it compresses a smaller number of tables

than the ALL strategy.

5. Experimental Evaluation

5.1 Experimental Setup

TPC-C [4] is a standard benchmark simulating real online

transaction processing (OLTP) workloads. The workload of

TPC-C is composed of two read-only and three read-write

transactions, which together provide many concurrent

random reads and writes to the storage device. Table 1

데이터베이스 압축 성능 향상을 위한 선택적 압축 전략 373

shows the mix of the transaction types. Besides the

standard mix in Table 1, which is a write-intensive

workload, we also configure a read-intensive workload, in

which the read-only transactions are dominant.

Transaction type
I/O

property

Standard

mix(%)

Read-intensive

mix(%)

New-Order read-write 45 1

Payment read-write 43 1

Delivery read-write 4 1

Stock-Level read-only 4 48.5

Order-Status read-only 4 48.5

Table 1. Transaction Types in TPC-C Benchmark

We use DBT-2 [9], which is an open-source

implementation of the TPC-C specification. We use a

workload of 1,000 warehouses with 20 database connections,

10 terminals per warehouse, and the duration of 7,200s after

10,000s warming-up period. The Key and Thinking time is

set to zero in order to measure the maximum performance.

According to Zaitsev [10], we add a secondary index to the

NEW_ORDER table on columns (no_w_id, no_d_id).

We run DBT-2 on top of MySQL Community Server

5.5.38. The buffer pool size is set to 2GB. To minimize the

interference by data caching at the OS layer, we use direct

I/O (O_DIRECT). To assure a controlled setting, we disable

MySQL binary logging, which keeps track of all updates to

the database. Unless specially stated, we use the default

compressed page size 8KB for experiments.

We measure space savings in Formula (1), database

loading time ratio in Formula (2), transactions-per-minute

(TPM) ratio in Formula (3). For the loading time ratio,

smaller is better, but for the TPM ratio, larger is better.

Hereafter, A denotes the ALL strategy, S the SELECTIVE

strategy, and N no compression. For the S strategy, we set

δ to 0.1.

     

   
(2)

  
  

(3)

Our experimentation platform is a 3.4GHz Intel Core

i7-2600K quad-core processor with 4GB of main memory,

a Samsung 830 Series 128GB SSD (256MB cache and

SATA III (6 Gb/s) interface) and a Western Digital

Caviar Black WD1002FAEX HDD (1TB, 7200RPM, 64MB

cache, and SATA III (6 Gb/s) interface). The operating

system used for the basic performance evaluation in

Section 5.2.1 is Windows 7 64bit and that used for all

other experiments is Ubuntu 12.04 64bit.

5.2. Experimental Results

5.2.1. Basic Performance Results

To understand the effect of storage devices (HDD and

SSD) on the performance of database compression, we

measure the basic performance of the devices. Tables 2

and 3 show the results, which are measured using the

CrystalDiskMark benchmark [11] version 3.0.1c. Compared

with HDD, SSD shows higher sequential and random

bandwidth and much higher concurrent random I/O

performance (BS = 4KB, QD = 32). For HDD, the relative

bandwidth gap between sequential I/O and random I/O is

quite large, because HDD has the inevitable mechanical

latency, which dominates the access time for a small data

page (e.g., 4KB) [12].

Device Read (MB/s) Write (MB/s)

SSD 486.2 260.8

HDD 132.6 130.6

Table 2. Sequential I/O Performance

Device

BS=512KB

(MB/s)

BS=4KB

(MB/s)

BS=4KB,

QD=32 (MB/s)

Read Write Read Write Read Write

SSD 334.3 250.7 23.9 82.1 318.9 118.3

HDD 44.7 76.5 0.6 1.2 1.2 1.1

Table 3. Random I/O Performance

(BS=Block Size, QD=Queue Depth)

5.2.2. Space Savings of Each Table

Table 4 shows the space savings of each table in

TPC-C. The table size includes the size of the indexes

created on the table. For the S strategy, we compress

only ORDER-LINE, ORDER, and HISTORY because their

space savings is greater than 45%.

Table
Uncompressed

size (MB)

Compressed

size (MB)

Space

savings

STOCK 36,904 24,488 34%

ORDER-LINE 26,308 13,296 49%

CUSTOMER 21,592 15,804 27%

ORDER 3,056 1,536 50%

HISTORY 2,404 1,208 50%

NEW-ORDER 456 260 43%

ITEM 18 12 33%

DISTRICT 9 5 44%

WAREHOUSE 0.20 0.13 35%

Table 4. The Space Savings of Each Table

374 정보처리학회논문지/소프트웨어 및 데이터 공학 제4권 제9호(2015. 9)

5.2.3. Results for the Standard Workload

We first present experimental results for the standard

mix of transactions, which is write intensive, then results

for the read-intensive workload in the next section. Fig. 1

and 2 show the influence of compression strategies. The

S strategy shows 1.1 times higher TPM than the

uncompressed counterpart (N) with 17.3% space savings

as in Fig. 1(a) and 1(b). Compared with the A strategy,

the S strategy shows lower space savings but up to 1.7

times higher TPM.

 (A) (B)

Fig. 1. TPM Ratio (A) and Space Savings (B) with Different

Strategies

Table 5 shows major time-consuming sub-operations

for executing a transaction. Lock wait and physical file

I/O take most of the transaction response time (61% to

83%), and the compression and decompression time takes

a small portion. We see that the decreasing order of lock

wait time is A, S, and N, and that of file I/O time is the

opposite. The lock wait time of the A strategy is 8.3 to

9.5 times longer than that of the S strategy due to more

page splits, and thus, the benefits of file I/O time savings

are eaten up by the additional lock waits.

Device Time (ms) A S N

SSD

transaction 509 292 316

lock wait 333 40 5

file I/O 63 143 188

comp. + decomp. 83 13 N/A

HDD

transaction 7,246 4,968 5,322

lock wait 4,714 496 252

file I/O 1,332 3,424 3,919

comp. + decomp. 982 138 N/A

Table 5. Average Elapsed Time Per Transaction

Fig. 2(a) shows that the TPMs of SSD are orders of

magnitude higher than those of HDD since SSD has

superior random I/O performance.

 (A) (B)

Fig. 2. TPM (A) and Loading Time Ratio (B) with

Different Strategies

Fig. 2(b) shows that, in terms of loading time, the S

strategy shows comparable performance (1.1 to 1.4 times

slower) to no compression N and up to 2.2 times better

performance than the A strategy. This is because the A

strategy has more compression overhead. During database

loading, page splits do not incur lock waits since we

sequentially load tables, and compression time becomes a

large portion as in Table 6.

Device Measure A S N

SSD

loading time (s) 24,075 10,868 7,815

comp. time (s) 15,028 3,090 N/A

CPU usage 80% 57% 38%

HDD

loading time (s) 32,045 17,304 15,525

comp. time (s) 17,284 3,617 N/A

CPU usage 38% 22% 11%

Table 6. Loading Performance

To see the effect of the compressed page size, we

vary the compressed page size with 4KB and 8KB. For

the S strategy, we should choose tables whose space

savings are close to 75% when the compressed page size

is set to 4KB, but there is no table satisfying the

condition. The space savings of all tables are less than

67%. Thus, the S strategy is not available for 4KB. Fig.

3 and 4 show that the page size of 4KB, which has more

compression overhead, shows similar space savings,

similar TPM, and worse loading performance compared

with the page size of 8KB.

5.2.4. Results for the Read-intensive Workload

Fig. 5 shows experimental results for the read-

intensive workload. If the workload is dominated by

reads, rather than updates, lock contention is not a

bottleneck anymore. Since the A strategy saves more I/O

bandwidth than the S strategy, it shows higher TPM for

the read-intensive workload for SSD. For HDD, however,

데이터베이스 압축 성능 향상을 위한 선택적 압축 전략 375

 (A) (B)

Fig. 3. Space Savings (A) and TPM Ratio (B) with Different

Page Sizes (Only for the A Strategy)

Fig. 4. Loading Time Ratio with Different Page Sizes

(Only for the A Strategy)

the A strategy shows similar TPM to the S strategy due

to poor random I/O performance of HDD. SSD has no

seek time and rotational delay, but HDD has.

Compression can reduce the transfer time, but cannot

reduce the seek time and rotational delay, which take

most of the I/O time in case of HDD. The S strategy

shows comparable TPM to no compression for both

write-intensive and read-intensive workloads, i.e., is less

sensitive to the workload type.

Fig. 5. TPM Ratio for the Read-Intensive Workload

5.3 Discussions

Practical guidelines for performance improvement of

database compression are as follows.

∙ For write-intensive workloads, use the SELECTIVE

strategy to reduce storage space without performance

degradation.

∙ For read-intensive workloads on SSD, use the ALL

strategy.

∙ If the type of workloads is unknown or unclear, use the

SELECTIVE strategy because it shows comparable

performance to no compression for both write-

intensive and read-intensive workloads.

∙Although the I/O characteristics of SSD are very

different from those of HDD, database compression is

also effective for SSD.

∙ Smaller compressed page sizes degrade loading

performance without improving space savings and

throughput for both SSD and HDD.

6. Conclusions

We have provided a set of useful guidelines for tuning

database compression based on an extensive experimental

evaluation. Especially, the SELECTIVE strategy makes

database compression highly desirable for both write-

intensive and read-intensive workloads. Experimental

results show that the SELECTIVE strategy achieves 1.1

times better performance than the uncompressed counterpart

with 17.3% space savings for the TPC-C benchmark.

References

[1] K.-H. Lee, “Performance Improvement of Database

Compression for OLTP Workloads,” IEICE Trans. on

Information and Systems, Vol.E97-D, No.4, pp.976-980, Apr.,

2014.

[2] M. Poess and D. Potapov, “Data Compression in Oracle,” In

Proc. the Int'l Conf. on Very Large Data Bases (VLDB),

pp.937-947, Sept., 2003.

[3] MySQL 5.5 Reference Manual, https://dev.mysql.com/doc/

refman/5.5/en/

[4] Transaction Processing Performance Council (TPC), TPC

BENCHMARK C, Standard Specification, Revision 5.11,

Feb., 2010.

[5] B. Bhattacharje et al., “Efficient index compression in DB2

LUW,” In Proc. the Int'l Conf. on Very Large Data Bases

(VLDB), pp.1462-1473, Aug., 2009.

[6] N. Ordulu and J. Tolmer, “InnoDB Compression: Present and

Future,” Percona Live MySQL Conference, Apr., 2013.

[7] zlib, http://zlib.net

376 정보처리학회논문지/소프트웨어 및 데이터 공학 제4권 제9호(2015. 9)

사진

[8] M. A. Roth and S. J. V. Horn, “Database Compression,” ACM

SIGMOD Record, Vol.22, No.3, pp.31-39, Sept., 1993.

[9] Database Test 2 (DBT2), http://sourceforge.net/apps/mediawiki/

osdldbt

[10] P. Zaitsev, “MySQL/InnoDB Performance, Server and

Schema,” MySQL Users Conference, Apr., 2004.

[11] CrystalDiskMark, http://crystalmark.info/?lang=en

[12] E.-M. Lee, S.-W. Lee, and S. Park, “Optimizing Index Scans

on Flash Memory SSDs,” ACM SIGMOD Record, Vol.40,

No.4, pp.5—10, Dec., 2011.

 Ki-Hoon Lee

e-mail : kihoonlee@kw.ac.kr

He has received B.S. (2000), M.S. (2002),

and Ph.D. (2009) degrees in Computer

Science from Korea Advanced Institute

of Science and Technology (KAIST).

He is currently an assistant professor of

Department of Computer Engineering at

Kwangwoon University.

