KIPS Tr. Software and Data Eng.
Vol.4, No.9 pp.371~376 pISSN: 2287-5905

HOIEHOIAN 2= ds %Mo*% PIot BN Q= M2b 371
http://dx.doi.org/10.3745/KTSDE.2015.4.9.371

A Selective Compression Strategy for Performance Improvement of
Database Compression

Ki-Hoon Lee"

ABSTRACT

The Internet of Things (IoT) significantly increases the amount of data. Database compression is important for big data because it can
reduce costs for storage systems and save I/O bandwidth. However, it could show low performance for write-intensive workloads such as
OLTP due to the updates of compressed pages. In this paper, we present practical guidelines for the performance improvement of database
compression. Especially, we propose the SELECTIVE strategy, which compresses only tables whose space savings are close to the
expected space savings calculated by the compressed page size. Experimental results using the TPC-C benchmark and MySQL show that
the strategy can achieve 1.1 times better performance than the uncompressed counterpart with 17.3% space savings.

Keywords: Database Compression, Performance Improvement, OLTP, TPC-C

ol=x2 2] - kRIS 9]3| 4 Z] ol 2k
deoleHlol & 5 A FA< ST A9 45 A3
ol 7| &
Q of
p- 4 =
RHESIEI (0T dolele] B2 Aeel Z7Nch dolelilolz Qe A% A28 W3 VO %2 ok + 97l de] u
olgldl glolA FTasttt ey dojEMo] s fhE S FolAo] tigt fldlelER <l OLTPQ} e 27 ARl JARE e

F Ak B =E
3 Ao ZRE odEE I3 A
A9 MySQLS ©]43 43S %3] SELECTIVE 2

A& BT

yxl% 1\(—’] ‘::9_ E]_Ol

7|9{=: GOIEHOlA &F,

1. Introduction

Compression is especially important for big data because
we can substantially reduce database storage cost and
save I/O bandwidth. However, it is generally known that
database compression is not suitable for write-intensive
workloads like OLTP [1,2]. is that
updates of compressed pages incur many page splits,
which require exclusive locks [1].

The main reason

Furthermore, updates

o] wRe WNISUE AR AFEAR) ANCR 5 ATA]

AL ol g /]Xoj—”\}‘ﬁ"‘ (No. NRF- 201:)R 1C 1A 1A02036517).
o] =R NWE FEgtw Wy g Yo o3 ATFEYS.
+ zg 3 9338 q]al"r 7—!4};]4765)(Z e

Manuscript Received : July 28, 2015
Accepted : August 24, 2015
* Corresponding Author: Ki-Hoon Lee(kihoonlee@kw.ac.kr)

& A S A% AeH Jlol=ael

o) EEY P.% &3 SELECTIVE

2 AN 53, 4% o4 2719 o
QS AT TPC-C A

dE=

I LI5S A% wolwA 173%¢] 3+ Aotari

require page reorganization and recompression, Wwhich
consume CPU cycles.

Due to the complexity of real systems, the tuning of
database compression for OLTP workloads is difficult and
time—-consuming. It depends on many factors such as the
compressed page size, workload characteristics, tables to
compress, and storage device types [3]. In this paper, we
provide comprehensive guidelines for tuning database
compression. Our guidelines do not need any database
engine modifications, and thus, can offer benefits to the
millions of already-deployed systems. One of the most
important guidelines, the SELECTIVE strategy, is that we
should compress only tables whose space savings are
similar to the expected space savings calculated by the

372 BEMEIES=2XA/AZER0 R HI0IH St M4T HM9=(2015. 9)

compressed page size. We focus on MySQL because it is
the world’s most widely used open-source DBMS with
millions of users. We conduct extensive experiments using
the TPC-C benchmark [4] and MySQL InnoDB [3], and
the results show that by applying the guidelines we can
reduce storage space without performance degradation.

The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 introduces database
compression. Section 4 proposes compression strategies, and
Section 5 presents an experimental evaluation of the proposed
compression strategies and discussions. Finally, Section 6
provides some concluding remarks.

2. Related Work

Poess and Potapov [2] have presented compression
techniques used in Oracle for read-only workloads.
Bhattacharjee et al. [5] have introduced index compression
techniques used in DB2. Ordulu and Tolmer [6] have
proposed the adaptive padding method to reduce the
compression overhead for insert-intensive workloads.
Recently, Lee [1] has improved the performance of database
compression for OLTP workloads by avoiding lock
contention. These techniques need modification of DBMS
engines. In contrast, our work focuses on tuning database
compression without any engine modification. Thus, our
work is easily applicable to the millions of already—deployed
MySQL database systems.

3. Database Compression

A table in MySQL InnoDB is stored as a B'-tree
index [3]. InnoDB uses zlib [7] to compress tables and
indexes [3]. The page size of an uncompressed table is
16KB, but a compressed table can use a smaller page
size (1KB, 2KB, 4KB, or 8KB) [3]. The same compressed
page size is used for a table and all of its indexes [3].
When a page cannot be compressed to the compressed
page size, InnoDB splits the page and recompresses the
splitted pages. The optimal size of the compressed page
depends on the data type and distribution [3]. If the
compressed page size is larger than the actual size of the
compressed data in the page, some space is wasted, but
the compressed page is rarely splitted and recompressed
for updates [3]. If the compressed page size is too small,
updates may incur page splits and recompression,
resulting in low concurrency, more space consumption,
and more CPU overhead [3].

4. Compression Strategies

We propose two strategies for choosing which tables
to compress: ALL and SELECTIVE. We define the space
savings (SS) according to literature [2, 8] in Formula (1).

uncompressed size— compressed size
uncompressed size

59— * 100 1

The ALL strategy simply compresses all the tables.
The SELECTIVE strategy compresses only tables whose
space savings Tss are close to the expected space savings
CPgs calculated by the compressed page size. Here, CP
denotes “Compressed Page”. This means that most of the
uncompressed pages of those tables successfully compress
to the compressed page size without incurring page splits.
We say Ty is 6-close to CPs if (1-8)CPss < Ty <
CPss where 0 < 6 < 1. For example, when the
compressed page size is 8KB and the uncompressed page
size is 16KB, ie., CPss = 50%, the SELECTIVE strategy
chooses tables whose space savings 45% < Ty < 50%
when & = 0.1.

According to Lee [1], if data is too densely stored in
compressed pages, page splits will be often incurred by
updates. Page splitting lock the whole index in exclusive
mode and lead to low concurrency. Suppose that an update
of a record increases the compressed size of the record. Due
to the increased size of the record, a compression failure
likely happens if the compressed page is already almost full
before updating. In this case, we should perform updates
with exclusive lock because page splitting can occur. The
SELECTIVE strategy reduces page splits for updates by
sacrificing space savings. Since it compresses only tables
that are compressed well, enough free space for the update
is usually available in the compressed page, and updates do
not incur page splits in most cases. Furthermore, the
SELECTIVE strategy has less compression/decompression
overhead because it compresses a smaller number of tables
than the ALL strategy.

5. Experimental Evaluation

5.1 Experimental Setup

TPC-C [4] is a standard benchmark simulating real online
transaction processing (OLTP) workloads. The workload of
TPC-C is composed of two read-only and three read-write
transactions, which together provide many concurrent
random reads and writes to the storage device. Table 1

shows the mix of the transaction types. Besides the
standard mix in Table 1, which is a write-intensive
workload, we also configure a read-intensive workload, in
which the read-only transactions are dominant.

Table 1. Transaction Types in TPC-C Benchmark

Transaction type /O Ste}ndard Readiintensive
property mix(%) mix(%)
New-Order read-write 45 1
Payment read-write 43 1
Delivery read-write 4 1
Stock-Level read-only 4 485
Order-Status read-only 4 485

We use DBT-2 [9], which is an open-source
implementation of the TPC-C specification. We use a
workload of 1,000 warehouses with 20 database connections,
10 terminals per warehouse, and the duration of 7,200s after
10,000s warming—up period. The Key and Thinking time is
set to zero in order to measure the maximum performance.
According to Zaitsev [10], we add a secondary index to the
NEW_ORDER table on columns (no_w_id, no_d_id).

We run DBT-2 on top of MySQL Community Server
55.38. The buffer pool size is set to 2GB. To minimize the
interference by data caching at the OS layer, we use direct
I/O (O_DIRECT). To assure a controlled setting, we disable
MySQL binary logging, which keeps track of all updates to
the database. Unless specially stated, we use the default
compressed page size SKB for experiments.

We measure space savings in Formula (1), database
loading time ratio in Formula (2), transactions-per-minute
(TPM) ratio in Formula (3). For the loading time ratio,
smaller is better, but for the TPM ratio, larger is better.
Hereafter, A denotes the ALL strategy, S the SELECTIVE
strategy, and N no compression. For the S strategy, we set
6 to 0.1.

loading time with comp. @)
loading time without comp.

loading time ratio=

TPM with comp.

IPMratio= —prr ithout comp.

@)

Our experimentation platform is a 3.4GHz Intel Core
17-2600K quad-core processor with 4GB of main memory,
a Samsung 830 Series 128GB SSD (256MB cache and
SATA I (6 Gb/s) interface) and a Western Digital
Caviar Black WDI1002FAEX HDD (1TB, 7200RPM, 64MB
cache, and SATA I (6 Gb/s) interface). The operating
system used for the basic performance evaluation in

MERN = M2 373

4
o

J

fal
O

CIOIEHIOIA 2= &5 g

[}
o

2
°

I

Section 5.2.1 is Windows 7 64bit and that used for all
other experiments is Ubuntu 12.04 64bit.

5.2. Experimental Results

5.2.1. Basic Performance Results

To understand the effect of storage devices (HDD and
SSD) on the performance of database compression, we
measure the basic performance of the devices. Tables 2
and 3 show the results, which are measured using the
CrystalDiskMark benchmark [11] version 3.0.1c. Compared
with HDD, SSD shows higher sequential and random
bandwidth and much higher concurrent random I/O
performance (BS = 4KB, QD = 32). For HDD, the relative
bandwidth gap between sequential I/O and random I/O is
quite large, because HDD has the inevitable mechanical
latency, which dominates the access time for a small data
page (e.g., 4KB) [12].

Table 2. Sequential 1/0 Performance

Device Read (MB/s) Write (MB/s)
SSD 486.2 260.8
HDD 132.6 130.6

Table 3. Random 1/0 Performance
(BS=Block Size, QD=Queue Depth)

BS=512KB BS=4KB BS=4KB,
Device (I\AB/S) (MB/S) QD=32 (MB/S)

Read Write Read Write Read Write

SSD 334.3 250.7 239 82.1 3189 1183

HDD 4.7 76.5 0.6 1.2 1.2 11

5.2.2. Space Savings of Each Table

Table 4 shows the space savings of each table in
TPC-C. The table size includes the size of the indexes
created on the table. For the S strategy, we compress
only ORDER-LINE, ORDER, and HISTORY because their
space savings is greater than 45%.

Table 4. The Space Savings of Each Table

Table Un(?ompressed Cqmpressed Sptace
size (MB) size (MB) savings

STOCK 36,904 24,4838 34%
ORDER-LINE 26,308 13,296 49%
CUSTOMER 21,592 15,804 21%
ORDER 3,056 1,536 50%
HISTORY 2,404 1,208 50%
NEW-ORDER 456 260 43%
ITEM 18 12 33%
DISTRICT 9 5 44%
WAREHOUSE 0.20 0.13 35%

374 ZEMEIGS=2A/AZER0 R HI0IH S M4T HM9=(2015. 9)

5.2.3. Results for the Standard Workload

We first present experimental results for the standard
mix of transactions, which is write intensive, then results
for the read-intensive workload in the next section. Fig. 1
and 2 show the influence of compression strategies. The
S strategy shows 1.1 times higher TPM than the
uncompressed counterpart (IN) with 17.3% space savings
as in Fig. 1(a) and 1(b). Compared with the A strategy,
the S strategy shows lower space savings but up to 1.7
times higher TPM.

12— 100%
20%
10 o 80%
008 2 70%
o6 § 60%
Z 8 50%
F 0.4 3 40%
0.2 ? 30%
20%
0.0 10%
A s|A s %
SSD | HDD A S
(A) B)
Fig. 1. TPM Ratio (A) and Space Savings (B) with Different
Strategies

Table 5 shows major time-consuming sub-operations
for executing a transaction. Lock wait and physical file
I/O take most of the transaction response time (61% to
83%), and the compression and decompression time takes
a small portion. We see that the decreasing order of lock
wait time is 4, S, and N, and that of file I/O time is the
opposite. The lock wait time of the A strategy is 8.3 to
95 times longer than that of the S strategy due to more
page splits, and thus, the benefits of file I/O time savings
are eaten up by the additional lock waits.

Table 5. Average Elapsed Time Per Transaction

Device Time (ms) A S N
transaction 509 292 316
lock wait 333 40 5
SSD
file I/O 63 143 183
comp. + decomp. 83 13 N/A
transaction 7,246 4,968 5,322
lock wait 4,714 496 252
HDD
file I/O 1,332 3,424 3,919
comp. + decomp. 932 138 N/A

Fig. 2(a) shows that the TPMs of SSD are orders of
magnitude higher than those of HDD since SSD has

superior random I/O performance.

4,500 35
4,000 R 30
3,500 S
3,000 B 25
= 2,500 220
= 2000 215
1,500 5 10
1,000 s
500 0.5
0.0
A S N|A 8 N A S|A s
ssD HDD sSD | HDD
(A) (B)

Fig. 2. TPM (A) and Loading Time Ratio (B) with
Different Strategies

Fig. 2(b) shows that, in terms of loading time, the S
strategy shows comparable performance (1.1 to 1.4 times
slower) to no compression N and up to 2.2 times better
performance than the A strategy. This is because the A
strategy has more compression overhead. During database
loading, page splits do not incur lock waits since we
sequentially load tables, and compression time becomes a
large portion as in Table 6.

Table 6. Loading Performance

Device Measure A S N
loading time (s) 24075 | 10,868 7,815
SSD comp. time (s) 15,028 3,090 N/A
CPU usage 80% 57% 38%
loading time (s) 32,045 17,304 15525
HDD comp. time (s) 17,284 3,617 N/A
CPU usage 38% 22% 11%

To see the effect of the compressed page size, we
vary the compressed page size with 4KB and 8KB. For
the S strategy, we should choose tables whose space
savings are close to 75% when the compressed page size
is set to 4KB, but there is no table satisfying the
condition. The space savings of all tables are less than
67%. Thus, the S strategy is not available for 4KB. Fig.
3 and 4 show that the page size of 4KB, which has more
compression overhead, shows similar space savings,
similar TPM, and worse loading performance compared

with the page size of 8KB.

5.2.4. Results for the Read-intensive Workload

Fig. 5 shows experimental results for the read-
intensive workload. If the workload is dominated by
reads, rather than updates, lock contention is not a
bottleneck anymore. Since the A strategy saves more I/O
bandwidth than the S strategy, it shows higher TPM for
the read-intensive workload for SSD. For HDD, however,

100% ———— 0.8
0% ——— 0.7
80% ——
70% 0.6
50% 0.4
40% 0.3
30%
20% 0.2
10% 0.1
0% 0.0
4KB 8KB 4KB 8KB | 4KB B8KB
A SSD HDD

space savings
TPM ratio

(A) B)

Fig. 3. Space Savings (A) and TPM Ratio (B) with Different
Page Sizes (Only for the A Strategy)

o
o

H~ o,
o o

= b W
o o o

loading time ratio

—

4KB 8KB 4KB BKB

SsD

Fig. 4. Loading Time Ratio with Different Page Sizes
(Only for the A Strategy)

the A strategy shows similar TPM to the S strategy due
to poor random I/O performance of HDD. SSD has no
HDD has.

Compression can reduce the transfer time, but cannot

seek time and rotational delay, but
reduce the seek time and rotational delay, which take
most of the I/O time in case of HDD. The S strategy
shows comparable TPM to no compression for both
write-intensive and read-intensive workloads, i.e., is less
sensitive to the workload type.

1.8
1.6
1.4
1.2

1.0
0.8
0.8
0.4
0.2
0.0
A S A

SSD HDD
Fig. 5. TPM Ratio for the Read-Intensive Workload

TPM ratio

HIOIEHIOIA &=

0z

oIr
0gt

>
njo
40
rot
rx
it
1A
o2
Ht
Iz
Ju
wW
~
[&2]

5.3 Discussions
Practical guidelines for performance improvement of
database compression are as follows.

* For write-intensive workloads, use the SELECTIVE
strategy to reduce storage space without performance
degradation.

» For read-intensive workloads on SSD, use the ALL

strategy.

If the type of workloads is unknown or unclear, use the

SELECTIVE strategy because it shows comparable

performance to no compression for both write-

intensive and read-intensive workloads.

Although the I/O characteristics of SSD are very
different from those of HDD, database compression is
also effective for SSD.

Smaller compressed page sizes degrade loading

performance without improving space savings and
throughput for both SSD and HDD.

6. Conclusions

We have provided a set of useful guidelines for tuning
database compression based on an extensive experimental
evaluation. Especially, the SELECTIVE strategy makes
database compression highly desirable for both write-
intensive and read-intensive workloads. Experimental
results show that the SELECTIVE strategy achieves 1.1
times better performance than the uncompressed counterpart
with 17.3% space savings for the TPC-C benchmark.

References

[1] K-H Lee, ‘“Performance Improvement of Database
Compression for OLTP Workloads,” IEICE Trans. on
Information and Systems, Vol.E97-D, No.4, pp.976-980, Apr.,
2014.

[21 M. Poess and D. Potapov, “Data Compression in Oracle,” In
Proc. the Int'l Conf. on Very Large Data Bases (VLDB),
pp.937-947, Sept., 2003.

[3] MySQL 55 Reference Manual, https://dev.mysql.com/doc/
refman/5.5/en/

[4] Transaction Processing Performance Council (TPC), TPC
BENCHMARK C, Standard Specification, Revision 5.11,
Feb., 2010.

[5] B. Bhattacharje et al., “Efficient index compression in DB2
LUW,” In Proc. the Int’l Conf on Very Large Data Bases
(VLDB), pp.1462-1473, Aug., 2009.

[6] N. Ordulu and J. Tolmer, “InnoDB Compression: Present and
Future,” Percona Live MySQL Conference, Apr., 2013.

[7] zlib, http://zlib.net

376 SEMEIGS=2A/AZER0 R HIOIH S M4T HM9=(2015. 9)

[8] M. A. Roth and S. J. V. Horn, “Database Compression,” ACM
SIGMOD Record, Vol.22, No.3, pp.31-39, Sept., 1993.

[9] Database Test 2 (DBT2), http://sourceforge.net/apps/mediawiki/
osdldbt

[10] P. Zaitsev, “MySQL/InnoDB Performance, Server and
Schema,” MySQL Users Conference, Apr., 2004.

[11] CrystalDiskMark, http://crystalmark.info/?lang=en

[12] E-M. Lee, S.-W. Lee, and S. Park, “Optimizing Index Scans

on Flash Memory SSDs,” ACM SIGMOD Record, Vol.40,
No.4, pp5—10, Dec., 2011. Kwangwoon University.

Ki-Hoon Lee
e-mail : kihoonlee@kw.ac.kr
He has received B.S. (2000), M.S. (2002),
and Ph.D. (2009) degrees in Computer
Science from Korea Advanced Institute
of Science and Technology (KAIST).
He is currently an assistant professor of

Department of Computer Engineering at

