DOI QR코드

DOI QR Code

에너지 ICT 융합과 빅데이터 서비스

Energy ICT convergence with big data services

  • 최종우 (한국전자통신연구원 에너지IT기술연구실) ;
  • 이일우 (한국전자통신연구원 에너지IT기술연구실)
  • 투고 : 2015.08.06
  • 심사 : 2015.09.22
  • 발행 : 2015.09.30

초록

본고에서는 에너지 사용량 절감 및 효과적인 에너지 사용을 위한 에너지 기술과 정보통신기술(ICT)의 융합에 대해 서술한다. 전 세계적인 에너지 사용량 증가 추세에 대응하기 위하여 많은 연구가 진행되어왔으나, 이들 중 많은 부분은 에너지 생산, 소비, 전달 단계에서 사용하는 장비 자체의 효율 증가를 목표로 하고 있다. 에너지 절감을 위한 ICT 적용은 획일화된 연구 방향에서 벗어나 기존에 고려 대상이 아니던 분야에서의 에너지 절감을 기대할 수 있다. 에너지 기술과 ICT의 융합을 통한 빅데이터 서비스 제공은 대량의 에너지 및 환경 데이터 연계 분석을 가능하게 한다. 빅데이터 분석을 통해 연관성이 불분명하던 데이터 간의 경향성을 찾아내는 것은 새로운 에너지 절감 방안 모색에 도움이 되며, 나아가 새로운 비즈니스 모델 개발로 이어질 수 있다. 본고는 에너지 기술과 ICT의 융합을 통해 빅데이터 서비스를 제공하는 실제 기업 및 프로젝트 사례들을 소개하는 것을 목적으로 한다.

This paper describes the convergence of the energy technology and information and communication technology (ICT), which helps to consume less energy effectively. While a lot of researches have done against the increase of world energy usage, most of them focus on the efficiency of energy supply, transfer, and consumption equipment. Applying the ICT to decrease energy usage could help to find energy saving factors in the new field that has not been considered as a valuable one before. The big data service with the energy technology and ICT convergence enables correlation analyses of large sets of energy and environmental data. Finding a data tendency with a big data service helps to develop energy saving policies. Furthermore, it could make a further step to develop a new business model. This paper introduces the real cases of the company and project that provides a big data service with the ICT convergence.

키워드

참고문헌

  1. Accenture. (2015). The right big data technology for smart grid - Distributed stream computing, http://www.accenture.com/us-en/blogs/technology-blog/archive/2014/04/28/the-right-big-data-technology-for-smart-grid-distributed-stream-computing.aspx.
  2. Ashton, K. (2009). That 'internet of things' thing. RFiD Journal, 22, 97-114.
  3. AT&T. (2015). AT&T and GE strengthen alliance, fuel innovation with smart energy solutions, http://about.att.com/story/att_and_ge_alliance_leads_to_smart_energy_solutions.html.
  4. Atzori, L., Iera, A. and Morabito, G. (2010). The internet of things: A survey. Computer networks, 54, 2787-2805. https://doi.org/10.1016/j.comnet.2010.05.010
  5. BNEF. (2013). Smart grid infrastructure remains global growth market, http://about.bnef.com/press-releases/smart-grid-infrastructure-remains-global-growth-market/.
  6. Bu, G. and Jeong, K. (2011). The analysis of EU carbon trading and energy prices using vector error correction model. Journal of the Korean Data & Information Science Society, 22, 401-412.
  7. Castell, S. (1990). Hacking out computer legislation. Update on Computer Audit. Control and Security, 2, 10-13.
  8. Cecati, C., Mokryani, G., Piccolo, A. and Siano, P. (2010). An overview on the smart grid concept. Proceedings of IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, IEEE Industrial Electronics Society, USA, 3322-3327.
  9. Cloudera. (2015). Energy & utilities, http://www.cloudera.com/content/cloudera/en/solutions/industries/energy-utilities.html.
  10. Corey, E. R. (1983). The role of information/communications technology in industrial distribution, Division of Research, Harvard Business School, USA.
  11. Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51, 107-113.
  12. Department for Education and Employment of UK. (1999). The National Curriculum Handbook for primary teachers in England 1999, Qualifications and Curriculum Authority, UK.
  13. Dincer, I. (1999). Environmental impacts of energy. Energy Policy, 27, 845-854. https://doi.org/10.1016/S0301-4215(99)00068-3
  14. Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4, 157-175. https://doi.org/10.1016/S1364-0321(99)00011-8
  15. EBC. (1987). Annex 16 building energy management systems-User interfaces and system integration, IEA, OECD.
  16. EBC. (1988). Annex 17 building energy management systems - Evaluation and emulation techniques, IEA, OECD.
  17. EBC. (1991). Annex 25 real time HEVAC simulation, IEA, OECD.
  18. EBC. (2001). Annex 40 commissioning of building HVAC systems for improving energy performance, IEA, OECD.
  19. EBC. (2008). Annex 53 total energy use in buildings: Analysis & evaluation methods, IEA, OECD.
  20. EIA. (2013). International energy outlook 2013, U.S. Department of Energy, USA.
  21. European Commision Joint Research Centre. (2014). 2013 Technology map of the european strategic energy technology plan, Publications Office of the European Union, Luxembourg.
  22. Farhangi, H. (2010). The path of the smart grid. IEEE Power and Energy Magazine, 8, 18-28.
  23. Freeman, C. (1989). New technology and catching up. The European Journal of Development Research, 1, 85-99. https://doi.org/10.1080/09578818908426503
  24. Forbes. (2014). IDC: Top 10 technology predictions for 2015, http://www.forbes.com/sites/gilpress/2014/12/02/idc-top-10-technology-predictions-for-2015/.
  25. Frost and Sullivan. (2011). Global smart grid market, http://www.frost.com/sublib/frost-content.do?sheetName=report-overview\&sheetGroup=N856-01-00-00-00\&viewName=virtual-brochure\&repid=N856-01-00-00-00.
  26. G8 RETF. (2001). G8 renewable energy task force final report, http://www.climate.org/PDF/g8{\_}ren{\_}energy.pdf.
  27. Ghemawat, S., Gobioff, H. and Leung, S. T. (2003). The Google file system. ACM SIGOPS Operating Systems Review, 37, 29-43. https://doi.org/10.1145/1165389.945450
  28. Google. (2014). Google to acquire Nest, https://investor.google.com/releases/2014/0113.html.
  29. Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29, 1645-1660. https://doi.org/10.1016/j.future.2013.01.010
  30. Haque, U. (2015). Pachube, http://www.haque.co.uk/pachube.php.
  31. IBM. (2011). Vestas wind systems turns to IBM big data analytics for smarter wind energy, http://www-03.ibm.com/press/us/en/pressrelease/35737.wss.
  32. IBM. (2015). Companies using apache storm, http://www-01.ibm.com/software/data/infosphere/hadoop/hadoop-industry-energy.html.
  33. Kasibhotla, D. and Lad, S. (2014). Industrial internet using big data, Big Data Techcon 2014, http://www.slideshare.net/samlad/big-data-techcon-2014.
  34. Kim, Y. and Cho, K. H. (2013). Big data and statistics. Journal of the Korean Data & Information Science Society, 24, 959-974. https://doi.org/10.7465/jkdi.2013.24.5.959
  35. Knorr, R. (2012). Best practice for successful big data projects, IBM Big Data Summit 2012, http://www-05.ibm.com/de/events/bigdatasummit/.
  36. KSGI. (2012). Smart grid, an energy revolution in our daily lives, Korea Smart Grid Institute, Kprea.
  37. Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety, META Group, Stamford.
  38. Laney, D. (2012). The importance of 'big data': A definition, Gartner, Stamford.
  39. Navigant Research. (2015). Building energy management systems, https://www.navigantresearch.com/research/building-energy-management-systems.
  40. Nest Labs. (2014). The nest develper program is here, https://nest.com/blog/2014/06/23/the-nest-developer-program-is-here/.
  41. Stevenson, D. (1997). Information and communications technology in UK schools: An independent inquiry, Independent ICT in Schools Commission, UK.
  42. Storm. (2015). Companies using apache storm, https://storm.apache.org/documentation/Powered-By.html.
  43. The World Bank Group. (2015). World development indicators: Power and communications, http://wdi.worldbank.org/table/5.11.
  44. Xively. (2014). LogMeIn's IoT platform, Xively, named best cloud-based technology for mobile at GSMA Mobile World Congress, https://xively.com/blog/notes/news/logmeins-iot-platform-xivelynamed-best-cloud-based-technology-for-mobile-at-gsma-mobile-world-congress/.
  45. Xively. (2015). Xively overview, http://xively.com/about/.