DOI QR코드

DOI QR Code

ON 4-EQUIVALENCED ASSOCIATION SCHEMES

  • Received : 2014.11.19
  • Published : 2015.09.30

Abstract

Let (${\Omega}$, S) be an association scheme where ${\Omega}$ is a non-empty finite set and S is a partition of ${\Omega}{\times}{\Omega}$. For a positive integer k we say that (${\Omega}$, S) is k-equivalenced if each non-diagonal element of S has valency k. In this paper we focus on 4-equivalenced association schemes, and prove that they are transitive.

Keywords

References

  1. Z. Arad, Y. Erez, and M. Muzychuk, On even generalized table algebras, J. Algebraic Combin. 17 (2003), no. 2, 163-170. https://doi.org/10.1023/A:1022930714277
  2. Z. Arad, Y. Erez, and M. Muzychuk, On homogeneous standard integral table algebras of degree 4, Comm. Algebra 34 (2006), no. 2, 463-519. https://doi.org/10.1080/00927870500387572
  3. E. Bannai and T. Ito, Algebraic Combinatorics. I, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.
  4. C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, CRC press, 2010.
  5. E. R. van Dam, A characterization of association schemes from affine spaces, Des. Codes Cryptogr. 21 (2000), no. 1-3, 83-86. https://doi.org/10.1023/A:1008331526417
  6. J. D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, Vol. 163, Springer-Verlag, New York, 1996.
  7. A. Hanaki and I. Miyamoto, Classification of association schemes with small vertices, published on web: http://math.shinshu-u.ac.jp/-hanaki/as/.
  8. M. Hirasaka, K.-T. Kim, and J. R. Park, Every 3-equivalenced association scheme is Frobenius, J. Algebraic Combin. 41 (2015), no. 1, 217-228. https://doi.org/10.1007/s10801-014-0533-6
  9. M. Muzychuk and I. Ponomarenko, On pseudocyclic association schemes, Ars Math. Contemp. 5 (2012), no. 1, 1-25.
  10. M. Muzychuk and P.-H. Zieschang, On association schemes all elements of which have valency 1 or 2, Discrete Math. 308 (2008), no. 14, 3097-3103. https://doi.org/10.1016/j.disc.2007.08.035
  11. P.-H. Zieschang, An algebraic approach to association schemes, Lecture Notes in Math-ematics, Vol. 1628, Springer-Verlag, Berlin, 1996.
  12. P.-H. Zieschang, Theory of Association Schemes, Springer Monograph in Mathematics, Springer-Verlag, Berlin, 2005.