Acknowledgement
Supported by : National Research Foundation of Korea(NRF)
References
- M. Choi, Y. H. Kim, H. Liu, and D. W. Yoon, Helicoidal surfaces and their Gauss map in Minkowski 3-space, Bull. Korean Math. Soc. 47 (2010), no. 4, 859-881. https://doi.org/10.4134/BKMS.2010.47.4.859
- M. Choi, Y. H. Kim, and G. Park, Helicoidal surfaces and their Gauss map in Minkowski 3-space II, Bull. Korean Math. Soc. 46 (2009), no. 3, 567-576. https://doi.org/10.4134/BKMS.2009.46.3.567
- M. Choi, Y. H. Kim, and D. W. Yoon, Some classification of surfaces of revolution in Minkowski 3-space, J. Geom. 104 (2013), no. 1, 85-106. https://doi.org/10.1007/s00022-013-0149-3
- O. J. Garay, An extension of Takahashi's Theorem, Geom. Dedicata 34 (1990), no. 2, 105-112. https://doi.org/10.1007/BF00147319
-
G. Kaimakamis and B. Papantoniou, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying
${\Delta}^{{II}^{\rightarrow}_r}$ =$A^{\rightarrow}_r$ , J. Geom. 81 (2004), no. 1-2, 81-92. https://doi.org/10.1007/s00022-004-1675-9 -
G. Kaimakamis and B. Papantoniou, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space
${\mathbb{E}}^3_1$ satisfying${\Delta}^{{III}^{\rightarrow}_r}$ =$A^{\rightarrow}_r$ , Bull. Greek Math. Soc. 50 (2005), 75-90. -
O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space
${\mathbb{L}}^3$ , Tokyo J. Math. 6 (1983), no. 2, 297-309. https://doi.org/10.3836/tjm/1270213872 - C. W. Lee, Y. H. Kim, and D. W. Yoon, Ruled surfaces of non-degenerate third fundamental forms in Minkowski 3-space, Appl. Math. Comput. 216 (2010), no. 11, 3200-3208. https://doi.org/10.1016/j.amc.2010.04.043
- B. O'Neill, Semi-Riemannian Geometry and its applications to Relativity, Academic Press, New York, 1983.
-
B. Senoussi and M. Bekkar, Helicoidal surfaces in the 3-dimensional Lorentz-Minkowski space
${\mathbb{E}}^3_1$ satisfying${\Delta}^{III}r$ = Ar, Tsukuba J. Math. 37 (2013), no 2, 339-353. https://doi.org/10.21099/tkbjm/1389972033 - T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385. https://doi.org/10.2969/jmsj/01840380
Cited by
- Isometric Deformation of (m,n)-Type Helicoidal Surface in the Three Dimensional Euclidean Space vol.6, pp.11, 2018, https://doi.org/10.3390/math6110226
- The Gauss Map and the Third Laplace-Beltrami Operator of the Rotational Hypersurface in 4-Space vol.10, pp.9, 2018, https://doi.org/10.3390/sym10090398