DOI QR코드

DOI QR Code

HELICOIDAL SURFACES OF THE THIRD FUNDAMENTAL FORM IN MINKOWSKI 3-SPACE

  • CHOI, MIEKYUNG (DEPARTMENT OF MATHEMATICS EDUCATION GYEONGSANG NATIONAL UNIVERSITY) ;
  • YOON, DAE WON (DEPARTMENT OF MATHEMATICS EDUCATION AND RINS GYEONGSANG NATIONAL UNIVERSITY)
  • Received : 2014.08.29
  • Published : 2015.09.30

Abstract

We study helicoidal surfaces with the non-degenerate third fundamental form in Minkowski 3-space. In particular, we mainly focus on the study of helicoidal surfaces with light-like axis in Minkowski 3-space. As a result, we classify helicoidal surfaces satisfying an equation in terms of the position vector field and the Laplace operator with respect to the third fundamental form on the surface.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. M. Choi, Y. H. Kim, H. Liu, and D. W. Yoon, Helicoidal surfaces and their Gauss map in Minkowski 3-space, Bull. Korean Math. Soc. 47 (2010), no. 4, 859-881. https://doi.org/10.4134/BKMS.2010.47.4.859
  2. M. Choi, Y. H. Kim, and G. Park, Helicoidal surfaces and their Gauss map in Minkowski 3-space II, Bull. Korean Math. Soc. 46 (2009), no. 3, 567-576. https://doi.org/10.4134/BKMS.2009.46.3.567
  3. M. Choi, Y. H. Kim, and D. W. Yoon, Some classification of surfaces of revolution in Minkowski 3-space, J. Geom. 104 (2013), no. 1, 85-106. https://doi.org/10.1007/s00022-013-0149-3
  4. O. J. Garay, An extension of Takahashi's Theorem, Geom. Dedicata 34 (1990), no. 2, 105-112. https://doi.org/10.1007/BF00147319
  5. G. Kaimakamis and B. Papantoniou, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying ${\Delta}^{{II}^{\rightarrow}_r}$ = $A^{\rightarrow}_r$, J. Geom. 81 (2004), no. 1-2, 81-92. https://doi.org/10.1007/s00022-004-1675-9
  6. G. Kaimakamis and B. Papantoniou, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space ${\mathbb{E}}^3_1$ satisfying ${\Delta}^{{III}^{\rightarrow}_r}$ = $A^{\rightarrow}_r$, Bull. Greek Math. Soc. 50 (2005), 75-90.
  7. O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space ${\mathbb{L}}^3$, Tokyo J. Math. 6 (1983), no. 2, 297-309. https://doi.org/10.3836/tjm/1270213872
  8. C. W. Lee, Y. H. Kim, and D. W. Yoon, Ruled surfaces of non-degenerate third fundamental forms in Minkowski 3-space, Appl. Math. Comput. 216 (2010), no. 11, 3200-3208. https://doi.org/10.1016/j.amc.2010.04.043
  9. B. O'Neill, Semi-Riemannian Geometry and its applications to Relativity, Academic Press, New York, 1983.
  10. B. Senoussi and M. Bekkar, Helicoidal surfaces in the 3-dimensional Lorentz-Minkowski space ${\mathbb{E}}^3_1$ satisfying ${\Delta}^{III}r$ = Ar, Tsukuba J. Math. 37 (2013), no 2, 339-353. https://doi.org/10.21099/tkbjm/1389972033
  11. T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385. https://doi.org/10.2969/jmsj/01840380

Cited by

  1. Isometric Deformation of (m,n)-Type Helicoidal Surface in the Three Dimensional Euclidean Space vol.6, pp.11, 2018, https://doi.org/10.3390/math6110226
  2. The Gauss Map and the Third Laplace-Beltrami Operator of the Rotational Hypersurface in 4-Space vol.10, pp.9, 2018, https://doi.org/10.3390/sym10090398