Acknowledgement
Supported by : NSF
References
- S. Attaway, Matlab: A Practical Introduction to Programming and Problem Solving, Elsevier, New York, 2009.
- J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.
- F. Berntsson, A spectral method for solving the sideways heat equation, Inverse Problems 15 (1999), no. 4, 891-906. https://doi.org/10.1088/0266-5611/15/4/305
- I. Bushuyev, Global uniqueness for inverse parabolic problems with final observation, Inverse Problems 11 (1995), no. 4, L11-L16. https://doi.org/10.1088/0266-5611/11/4/001
- J. R. Cannon and P. DuChateau, An inverse problem for an unknown source in a heat equation, J. Math. Anal. Appl. 75 (1980), no. 2, 465-485. https://doi.org/10.1016/0022-247X(80)90095-5
- J. R. Cannon and P. DuChateau, Structural identification of an unknown source term in a heat equation, Inverse Problems 14 (1998), no. 3, 535-551. https://doi.org/10.1088/0266-5611/14/3/010
- M. Choulli, An inverse problem for a semilinear parabolic equation, Inverse Problems 10 (1994), no. 5, 1123-1132. https://doi.org/10.1088/0266-5611/10/5/009
- M. Choulli and M. Yamamoto, Generic well-posedness of an inverse parabolic problemthe Holder-space approach, Inverse Problems 12 (1996), no. 3, 195-205. https://doi.org/10.1088/0266-5611/12/3/002
- Y. J. Deng and Z. H. Liu, Iteration methods on sideways parabolic equations, Inverse Problems 25 (2009), no. 9, 095004, 14 pp. https://doi.org/10.1088/0266-5611/25/9/095004
- Y. J. Deng and Z. H. Liu, New fast iteration for determining surface temperature and heat ux of general sideways parabolic equation, Nonlinear Anal. Real World Appl. 12 (2011), 156-166. https://doi.org/10.1016/j.nonrwa.2010.06.005
- L. Elden, F. Berntsson, and T. Reginska, Wavelet and Fourier methods for solving the sideways heat equation, SIAM J. Sci. Comput. 21 (2000), no. 6, 2187-2205. https://doi.org/10.1137/S1064827597331394
- H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, 1996.
- L. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.
- A. Hasanov, Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach, J. Math. Anal. Appl. 330 (2007), no. 2, 766-779. https://doi.org/10.1016/j.jmaa.2006.08.018
- M. I. Ivanchov, The inverse problem of determining the heat source power for a parabolic equation under arbitrary boundary conditions, J. Math. Sci. 88 (1998), no. 3, 432-436. https://doi.org/10.1007/BF02365265
- D. W. Kim, J.-E. Lee, and H.-K. Oh, Heat Conduction to Photoresist on Top of Wafer during Post Exposure Bake Process: I. Numerical Approach, Japan. J. Appl. Phys. 47 (2008), 8338-8348. https://doi.org/10.1143/JJAP.47.8338
- A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, 1996.
- L. Ling, M. Yamamoto, Y. C. Hon, etc., Identification of source locations in twodimensional heat equations, Inverse Problems 22 (2006), no. 4, 1289-1305. https://doi.org/10.1088/0266-5611/22/4/011
- J. Liu and Y. Deng, A modified landweber iteration for general sideways parabolic equations, Acta Math. Appl. Sin. Engl. Ser. 27 (2011), no. 4, 727-738. https://doi.org/10.1007/s10255-011-0104-8
- V. A. Morozov, On the solution of functional equations by the method of regularization, Soviet Math. Dokl. 7 (1966), 414-417.
- G. Ozkum, A. Demir, S. Erman, E. Korkmaz, and B. Ozgur, On the Inverse Problem of the Fractional Heat-Like Partial Differential Equations: Determination of the Source Function, Adv. Math. Phys. 2013 (2013), Art. ID 476154, 8 pp.
- M. Renardy, W. J. Hursa, and J. A. Nohel, Mathematical Problems in Viscoelasticity, Wiley, New York, 1987.
- G. M. Vainikko and A. Y. Veretennikov, Iteration Procedures in Ill-Posed Problems, Moscow, Nauka (in Russian) McCormick, S.F., 1986.
- R. H. S. Winterton, Heat Transfer, Oxford University Press, Oxford, 1997.
- C. Zheng and G. D. Bennett, Applied Contaminant Transport Modelling: Theory and Practice, Van Nostrand Reinhold, New York, 1995.