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SPECTRAL APPROXIMATIONS OF ATTRACTORS

FOR CONVECTIVE CAHN-HILLIARD EQUATION

IN TWO DIMENSIONS

Xiaopeng Zhao

Abstract. In this paper, the long time behavior of the convective Cahn-
Hilliard equation in two dimensions is considered, semidiscrete and com-
pletely discrete spectral approximations are constructed, error estimates
of optimal order that hold uniformly on the unbounded time interval
0 ≤ t < ∞ are obtained.

1. Introduction

Recently, more and more people are interested in the convective Cahn-
Hilliard equation

∂u

∂t
+ γ∆2u = ∆ϕ(u) + β · ∇ψ(u),

which arises naturally as a continuous model for phase transition in binary
systems, such as alloys, glass and polymer mixtures (see [2, 12]). Here, u(x, t)
denotes the concentration of one of two phases in a system which is undergoing
phase separation. The convective term β · ∇ψ(u) which is introduced to study
how the phase transition is affected by the steady fluid flow.

In [15], Zaks et al. [15] studied the bifurcations of stationary periodic so-
lutions of a convective Cahn-Hilliard equation; Eden and Kalantarov [3, 4]
established some results on the existence of a compact attractor for the con-
vective Cahn-Hilliard equation with periodic boundary conditions in one space
dimension and three space dimensions; Based on the Schauder type estimates,
Liu [8] not only established the global existence of classical solutions for convec-
tive Cahn-Hilliard equation, but also discussed the nonnegativity and the finite
speed of propagation of perturbations of solutions for convective Cahn-Hilliard
equation; Zhao et al. [17] considered the global attractor for the convective
Cahn-Hilliard equation in two space dimensions with the functions ϕ(s) and
ψ(s) are polynomials. In addition, Zhao and Liu [18, 19] also considered the
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optimal control problem for convective Cahn-Hilliard equation in 1D and 2D
cases.

The study of long time behavior for dissipative nonlinear partial differential
equations depended on the results of numerical experimentation to a great
extent. For this reason, it is worth studying whether the numerical results
are reliable and the calculation schemes are suitable. In [7], based on the finite
element method, Hale et al. studied the approximate attractor of some types of
nonlinear evolution equation; In [5], based on the finite element method, Elliott
and Larsson considered the approximate attractor of Cahn-Hilliard equation;
In [10], based on the a prior estimates, Lü and Lu obtained the existence
and the convergence of global attractors for a fully discrete classical Galerkin
spectral scheme of generalized Kdv-Burgers equation. For more results on the
numerical approximation to long time behavior of nonlinear evolutions, we refer
the reader to [9, 13, 16].

In this article, we consider the 2D convective Cahn-Hilliard equation

(1.1)
∂u

∂t
+ γ∆2u−∆ϕ(u)− β · ∇ψ(u) = 0, x = (x1, x2) ∈ R

2, t > 0,

where γ is a positive constant, β is a vector. Equation (1.1) is supplemented
by the following boundary conditions

(1.2) u(x1 + 2π, x2, t) = u(x1, x2 + 2π, t) = u(x1, x2, t), x ∈ R
2, t ≥ 0,

and initial condition

(1.3) u(x, 0) = u0(x), x ∈ R
2.

In this paper, we assume that the initial function has zero mean, i.e.,
∫

Ω u0(x)dx

= 0, then it follows from (1.3) that
∫

Ω
u(x, t)dx = 0 for t > 0. On the other

hand, we use the following notation: Ω = [0, 2π]×[0, 2π]; (·, ·) denotes the inner
product of L2(Ω), ‖ ·‖m the norm of Lm(Ω), and ‖ ·‖ = ‖ ·‖L2, ‖ ·‖∞ = ‖ ·‖L∞.

The outline of this paper is as follows. In the next section, the existence
of discrete attractors Aτ

N is obtained by the t-independent prior estimates of
discrete solutions; In Section 3, the convergence of Aτ

N is proved by the error
estimates in [0,+∞) of the discrete solutions.

Finally in this section, we give the following lemmas which are necessary for
further discussion.

Lemma 1.1 (Poincaré inequality [6]). Suppose that Ω ⊂ R
n is a bounded

domain and ‖ · ‖ is the norm of L2(Ω). Then we have the Poincaré inequality:

• ∀v ∈ H1
0 (Ω),

‖v‖ ≤
|Ω|

π
‖Dv‖, n = 1, ‖v‖ ≤ C(Ω)‖Dv‖, n ≥ 2.

• ∀v ∈ H1(Ω),

‖v‖2 ≤
|Ω|2

2
‖Dv‖2 +

1

|Ω|

(
∫

Ω

vdx

)2

, n = 1,
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‖v‖2 ≤ C(Ω)

[

‖Dv‖2 +

(
∫

Ω

v(x)dx

)2
]

, n ≥ 2.

Lemma 1.2 (Sobolev interpolation inequality [11]). Suppose that u ∈ Lq(Ω),
Dmu ∈ Lr(Ω), Ω ⊂ R

n, 1 ≤ r ≤ ∞, 0 ≤ j ≤ m. Then there exists a constant

c = c(j,m,Ω, p, q, r) independent of u such that

‖Dju‖Lp ≤ c‖Dmu‖αWm,r‖u‖1−α
Lq ,

where
1

p
=
j

n
+ α

(

1

r
−
m

n

)

+ (1− α)
1

q
,

j

m
< α < 1.

2. Semidiscrete Galerkin spectral approximation

For any given positive integer N , j = (j1, j2), j · x = j1x1 + j2x2, let SN =
span{eij·x : |j| ≤ N}, where |j| = max{|j1|, |j2|}. Denote by PN : L2

p(Ω) → SN

the orthogonal projection operator. For operator PN and functions in SN , we
have the following results (see [1]):

(B1) PN commutes with derivation on H2
p (Ω), i.e.,

PN∆u = ∆PNu, ∀u ∈ H2
p (Ω).

(B2) For any real 0 ≤ µ ≤ σ, there is a constant c independent of u, N such
that

‖u− PNu‖Hµ ≤ cNµ−σ‖u‖Hσ , ∀u ∈ Hσ
p (Ω).

2.1. Existence of approximation global attractors AN

By using Galerkin method, for each N ≥ |j|, we find

uN (x, t) =
∑

|j|≤N

βj(t)vj(x) ∈ SN

such that βj(t) satisfies the following ODEs

(2.1)

{ (

uNt + γ∆2uN −∆ϕ(uN )− β · ∇ψ(uN ), vj
)

= 0,
(uN (·, 0), vj) = (uN0(·), vj), |j| ≤ N.

According to ODE theory, there exists a unique local solution to problem (2.1).
What we should do is to show a prior estimates. In addition, we assume that
‖u0‖H2 ≤ R, where R is a positive constant.

Lemma 2.1. Suppose that γ is sufficiently large, ϕ, ψ ∈ C1, ϕ′(s) ≥ −c0,
u0(x) ∈ L2(Ω), then the solution uN (x, t) of problem (2.1) satisfies

‖uN(x, t)‖2 ≤ ‖u0‖
2e−c1t, t ≥ 0,

lim
t→∞

‖uN(x, t)‖2 ≤ ρ20,

where c0, c1 and ρ20 are positive constants independent of N , t.
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Proof. Setting vj = uN(x, t) in (2.1), we derive that

1

2

d

dt
‖uN‖2 + γ‖∆uN‖2 = (ϕ(uN ),∆uN ) + (β · ∇ψ(uN ), uN).

Then

(2.2)
1

2

d

dt
‖uN‖2 + γ‖∆uN‖2 + (ϕ′(uN )∇uN ,∇uN ) = (β · ∇ψ(uN ), uN ).

Note that ϕ′(s) ≥ −c0. Hence

(2.3) (ϕ′(uN)∇uN ,∇uN ) ≥ −c0‖∇uN‖2.

On the other hand, a simple calculation shows that

(2.4) (β · ∇ψ(uN ), uN ) = β ·

∫

Ω

ψ′(uN )uN∇uNdx = 0.

By Poincare’s inequality, we obtain

(2.5) ‖uN‖2 ≤ C(Ω)

{

‖∇uN‖2 +

(
∫

Ω

uNdx

)2
}

≤ C1‖∇uN‖2.

We also have

(2.6) C1‖∇uN‖2 = −C1

∫

Ω

uN∆uNdx ≤
1

2
‖uN‖2 +

C2
1

2
‖∆uN‖2.

Adding (2.5) and (2.6) together gives

(2.7) ‖uN‖2 ≤ C2
1‖∆uN‖2.

It then follows from (2.2)-(2.4) and (2.7) that

(2.8)
d

dt
‖uN‖2 +

(

γ

C2
1

−
c20
γ

)

‖uN‖2 ≤ 0,

where γ is large enough, which satisfies γ

C2
1

−
c20
γ
> 0. Then, by uniform Gron-

wall’s inequality, we obtain

‖uN(x, t)‖2 ≤‖u0‖
2e

−

(

γ

C2
1

−
c2
0
γ

)

t
,(2.9)

which implies that

(2.10) lim
t→∞

‖uN(x, t)‖2 ≤ ρ20.

Therefore, Lemma 2.1 is proved. �

Lemma 2.2. In addition to the conditions of Lemma 2.1, we suppose that

u0(x) ∈ H1
p (Ω), ϕ ∈ C2 and ϕ(s), ψ(s) satisfy

ϕ(i)(r) ≤ c|r|k−i + c′, ψ′(r) ≤ cr2
√

ϕ′(r) + c′,

where k ≤ 3 is a positive constant and i = 0, 1, 2. Then the solution uN (x, t)
of problem (2.1) satisfies

‖∇uN(x, t)‖2 ≤ ‖∇u0‖
2e−c3t + c4, t ≥ 0,
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lim
t→∞

‖∇uN(x, t)‖2 ≤ ρ21,

where c3, c4 and ρ21 are positive constants independent of N , t.

Proof. Setting vj = ∆uN (x, t) in (2.1), we derive that

(2.11)
1

2

d

dt
‖∇uN‖2+γ‖∇∆uN‖2+(∆ϕ(uN ),∆uN )+(β ·∇ψ(uN ),∆uN) = 0.

We also have

(2.12) (∆ϕ(uN ),∆uN ) =

∫

Ω

ϕ′(uN )|∆uN |2dx+

∫

Ω

ϕ′′(uN)|∇uN |2∆uNdx.

Combining (2.11) and (2.12) together gives
(2.13)

1

2

d

dt
‖∇uN‖2 + γ‖∇∆uN‖2 +

∫

Ω

ϕ′(uN )|∆uN |2dx

= −

∫

Ω

ϕ′′(uN )|∇uN |2∆uNdx− β ·

∫

Ω

ψ′(uN )∇uN∆uNdx

≤ C

(
∫

Ω

|uN∆uN ||∇uN |2dx+

∫

Ω

|u2N
√

ϕ′(uN )∇uN∆uN |dx+ ‖∇uN‖2
)

≤
C

2

∫

Ω

|∇uN |4dx+
C

2

∫

Ω

|uN∆uN |2dx+

∫

Ω

ϕ′(uN)|∆uN |2dx

+
C2|β|2

4

∫

Ω

u4N |∇uN |2dx+ C‖∇uN‖2.

Using Sobolev’s interpolation inequality, we obtain

‖uN‖4 ≤ C‖∇∆uN‖
1
6 ‖uN‖

5
6 , ‖∇uN‖4 ≤ C‖∇∆uN‖

1
2 ‖uN‖

1
2 ,

‖uN‖8 ≤ C‖∇∆uN‖
1
4 ‖uN‖

3
4 , ‖∆uN‖4 ≤ C‖∇∆uN‖

5
6 ‖uN‖

1
6 .

By Hölder’s inequality and the above inequalities, we get

(2.14) ‖uN‖24‖∆uN‖24 ≤
γ

4C
‖∇∆uN‖2 + C3,

(2.15) ‖uN‖48‖∇uN‖24 ≤
γ

2C2|β|2
‖∇∆uN‖2 + C4,

and

(2.16) ‖∇uN‖44 ≤
γ

4C
‖∇∆uN‖2 + C5.

It then follows from (2.13)-(2.16) that

(2.17)
d

dt
‖∇uN‖2 +

5γ

4
‖∇∆uN‖2 ≤ 2C‖∇uN‖2 + 2(C3 + C4 + C5).

Using Sobolev’s interpolation inequality again, we immediately obtain

‖∇uN‖ ≤ C‖∇∆uN‖
1
3 ‖uN‖

2
3 .
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Hence

(2.18) 2C‖∇uN‖2 ≤
γ

4
‖∇∆uN‖2 + C6.

Using (2.17) and (2.18), we deduce that

(2.19)
d

dt
‖∇uN‖2 + γ‖∇uN‖2 ≤ C7,

where C7 = 2(C3+C4+C5)+C6. By uniform Gronwall’s inequality, we obtain

(2.20) ‖∇uN‖2 ≤ ‖∇u0‖
2e−γt +

C7

γ
,

which implies that

(2.21) lim
t→∞

‖∇uN(x, t)‖2 ≤ ρ21,

where ρ21 = C7

γ
. Therefore, Lemma 2.2 is proved. �

Corollary 2.3. In addition to the conditions of Lemma 2.2, there exists a

unique solution uN (x, t) for problem (2.1) in (0,+∞), which satisfies

‖uN(x, t)‖p ≤ C(R), 0 < p < +∞, t ≥ 0,

where C(R) is a positive constant dependent only on R.

Lemma 2.4. In addition to the conditions of Lemma 2.2, we suppose that

u0 ∈ H2
p (Ω), then the solution uN (x, t) of problem (2.1) satisfies

‖∆uN(x, t)‖2 ≤ ‖∆u0‖
2e−c5t + c6, t ≥ 0,

lim
t→∞

‖∆uN(x, t)‖2 ≤ ρ22,

where c5, c6 and ρ22 are positive constants independent of N , t.

Proof. Setting vj = ∆2uN (x, t) in (2.1), we derive that

(2.22)
1

2

d

dt
‖∆uN‖2 + γ‖∆2uN‖2 = (∆ϕ(uN ),∆2uN) + (β · ∇ψ(uN ),∆2uN ).

We also have

(∆ϕ(uN ),∆2uN)(2.23)

= (ϕ′(uN )∆uN + ϕ′′(uN )|∇uN |2,∆2uN)

≤
γ

4
‖∆2uN‖2 +

2

γ
‖ϕ′(uN )∆uN‖2 +

2

γ
‖ϕ′′(uN )|∇uN |2‖2,

and

(β · ∇ψ(uN ),∆2uN ) = β · (ψ(uN )∇uN ,∆
2uN )(2.24)

≤
γ

4
‖∆2uN‖2 +

|β|2

γ
‖ψ′(uN )∇uN‖2.
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Adding (2.22)-(2.24) together gives

d

dt
‖∆uN‖2 + γ‖∆2uN‖2(2.25)

≤
4

γ

∫

Ω

|ϕ′(uN )∆uN |2dx+
4

γ

∫

Ω

|ϕ′′(uN )|∇uN |2|2dx

+
2|β|2

γ

∫

Ω

u4N |ϕ′(uN)∇uN |2dx

≤ C

(
∫

Ω

u4N |∆uN |2dx+

∫

Ω

u2N |∇uN |4dx+

∫

Ω

u6N |∇uN |2dx

)

≤ C
(

‖∆uN‖24 + ‖∇uN‖48 + ‖∇uN‖24
)

.

By Sobolev’s interpolation inequality, we conclude

‖∆uN‖24 ≤ (C‖∆2uN‖
5
8 ‖uN‖

3
8 )2 ≤

γ

6
‖∆2uN‖2 + C8,(2.26)

‖∇uN‖24 ≤ (C‖∆2uN‖
3
8 ‖uN‖

5
8 )2 ≤

γ

6
‖∆2uN‖2 + C9,(2.27)

‖∇uN‖48 ≤ (C‖∆2uN‖
7
16 ‖uN‖

11
16 )4 ≤

γ

6
‖∆2uN‖2 + C10.(2.28)

It then follows from (2.25)-(2.28) that

d

dt
‖∆uN‖2 +

γ

2
‖∆2uN‖2 ≤ C8 + C9 + C10.

By a Calderón-Zygmund type estimate, we have

(2.29)
d

dt
‖∆uN‖2 + C11(‖∆uN‖2 + ‖∇∆uN‖2) ≤ C12.

Using uniform Gronwall’s inequality, we derive that

(2.30) ‖∆uN‖2 ≤ ‖∆u0‖
2e−C11t +

C12

C11
,

which implies that

(2.31) lim
t→∞

‖∆uN(x, t)‖2 ≤ ρ22,

where ρ22 = C12

C11
. Then, Lemma 2.4 is proved. �

Corollary 2.5. In addition to the conditions of Lemma 2.4, there exists a

unique solution uN (x, t) for problem (2.1) in (0,+∞), which satisfies

‖uN(x, t)‖∞ ≤ C(R), t ≥ 0,

where C(R) is a positive constant dependent only on R.

Lemma 2.6. In addition to the conditions of Lemma 2.4, we suppose that

ϕ ∈ C3, ψ ∈ C2, then the solution uN (x, t) of problem (2.1) satisfies

‖∇∆uN(x, t)‖ ≤
E0

t
+ E1, t > 0,

where E0 is a positive constant dependent on R and t, independent of N .
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Proof. Setting vj = t2∆3uN(x, t) in (2.1), we derive that

(2.32)
(

uNt + γ∆2uN −∆ϕ(uN )− β · ψ(uN ), t2∆3uN
)

= 0.

Note that

(2.33) (uNt, t
2∆3uN) = −

1

2

d

dt
‖t∇∆uN‖2 + ‖t

1
2∇∆uN‖2,

and

(2.34) (γ∆2uN , t
2∆3uN ) = −γ‖∇∆2uN‖2.

In addition, we have

|(β · ψ(uN ), t2∆3uN)|(2.35)

= |

∫

Ω

t2∇(ψ′(uN )∇uN )∇∆2uNdx|

≤

∫

Ω

t2|ψ′(uN)∆uN∇∆2uN |dx +

∫

Ω

t2|ψ′′(uN )|∇uN |2∇∆2uN |dx

≤ C

(
∫

Ω

t2|∆uN∇∆2uN |dx +

∫

Ω

t2||∇uN |2∇∆2uN |dx

)

≤
γ

2
‖t∇∆2uN‖2 + C(‖∆uN‖2 + ‖∇uN‖44)

≤
γ

2
‖t∇∆2uN‖2 + C13

and

|(∆ϕ(uN ), t2∆3uN )|(2.36)

= |(∇∆ϕ(uN ), t2∇∆2uN)|

≤

∫

Ω

t2|ϕ′(uN )∇∆uN∇∆2uN |dx+ 3

∫

Ω

t2|ϕ′′(uN )∇uN∆uN∇∆2uN |dx

+

∫

Ω

t2|ϕ′′′(uN )|∇uN |3∇∆2uN |dx

≤ C

(
∫

Ω

t2|∇∆uN∇∆2uN |dx+ 3

∫

Ω

t2|∇uN∆uN∇∆2uN |dx

+

∫

Ω

t2||∇uN |3∇∆2uN |dx

)

≤
γ

2
‖t∇∆2uN‖2 + C(‖∇∆uN‖2 + ‖∇uN∆uN‖2 + ‖∇uN‖66)

≤
γ

2
‖t∇∆2uN‖2 + C(‖∇∆uN‖2 + ‖∇uN‖2∞‖∆uN‖2 + ‖∇uN‖66)

≤
γ

2
‖t∇∆2uN‖2 + C14‖∇∆uN‖2 + C15.
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We have used Sobolev embeddingH3(Ω) →֒W 1,∞(Ω) in (2.36), which is correct
in 2D case. Combing (2.32)-(2.36) together gives

(2.37)
d

dt
‖t∇∆uN‖2 ≤ 2C14‖∇∆uN‖2 + 2(C13 + C15).

It then follows from (2.29) and (2.37) that

(2.38) ‖∇∆uN(x, t)‖ ≤
C16

t
+ C17, t > 0,

where C16 and C17 are two positive constant dependent on R and t, independent
of N . �

Now, from Lemma 2.1, Lemma 2.2, Lemma 2.4, Lemma 2.6 and the compact
argument, we have:

Theorem 2.7. Suppose that γ is sufficiently large, u0 ∈ H2
p (Ω), ϕ ∈ C2 and

ψ ∈ C1 also satisfy

ϕ′(r) > 0, ϕ(i)(r) ≤ c|r|k−i + c′, ψ′(r) ≤ cr2
√

ϕ′(r) + c′,

where k ≤ 3 is a positive constant and i = 0, 1, 2. Then there exists a unique

global solution u(x, t) for problem (1.1)-(1.3), such that

u(x, t) ∈ L∞(R+;H2
p(Ω))

⋂

L2(R+;H4
p (Ω)).

Furthermore, if ϕ ∈ C3, ψ ∈ C2, then

‖∇∆uN(x, t)‖ ≤
E0

t
+ E1, t > 0,

where E0 and E1 are two positive constant dependent on R and t.

In the conditions of Theorem 2.7, the solution operator of problem (1.1)-
(1.3) generate an operator semigroup S(t). Similarly, for the solution u(x, t) of
problem (1.1)-(1.3), we also have the a prior estimates as Lemma 2.1, Lemma
2.2, Lemma 2.4 and Lemma 2.6. Thus, the operator S(t) is a continuous
operator from H2

p (Ω) to itself. On the other hand, set B0 = {u ∈ H2
p (Ω) :

‖u‖2
H2(Ω) ≤ 2(ρ20 + ρ21 + ρ22)}. It is easy to see that B0 is an absorbing set,

and S(t) is uniform compact for t large enough. Therefore, the semigroup
of operator S(t) has a compact global attractor A ⊂ H2

p (Ω). It is similar
completely, the solution operator of problem (2.1) also generate an operator
semigroup SN (t) on SN , which possesses an attractor AN .

2.2. Convergence of the global attractors AN

Define the semidistance of two sets A and B in H2(Ω) as follows

d(A,B) = sup
x∈A

inf
y∈B

‖x− y‖H2(Ω).

We say that AN converge to A, if

d(AN ,A) → 0 as N → +∞.
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Set

(2.39) u− uN = u− PNu+ PNu− uN = η + θ.

Based on (1.1)-(1.3) and (2.1), θ satisfies
(2.40)
{

(θt, v) + γ(∆θ,∆v)=(ϕ(u)−ϕ(uN ),∆v)−β · (ψ(u)− ψ(uN),∇v), ∀v ∈ SN

θ(x, 0) = 0.

Theorem 2.8. In addition to the conditions of Theorem 2.7, we suppose that

u(x, t) is the solution of problem (1.1)-(1.3) and uN (x, t) is the solution of

semi-discrete approximation (2.1). Then

‖u(x, t)− uN (x, t)‖H2 ≤ C

(

E0

t
+ E1 + C17

)

N−1,

where C17 is a positive constant dependent on ‖u0‖H2 .

Proof. Setting v = θ in (2.40), we deduce that

(2.41)
1

2

d

dt
‖θ‖2 + γ‖∆θ‖2 = (ϕ(u)− ϕ(uN ),∆θ)− (β · [ψ(u)− ψ(uN)],∇θ).

Note that

(ϕ(u)− ϕ(uN ),∆θ) = (ϕ′(ξu+ (1 − ξ)uN )(u− uN ),∆θ)(2.42)

≤ ‖ϕ′(ξu + (1− ξ)uN )‖∞‖u− uN‖‖∆θ‖

≤ C(‖η‖+ ‖θ‖)‖∆θ‖

≤
γ

2
‖∆θ‖2 + C18(‖η‖

2 + ‖θ‖2),

and

−(β · [ψ(u)− ψ(uN )],∇θ) = − (β · [ψ′(ζu + (1− ζ)uN )(u − uN)],∇θ)

(2.43)

≤ |β|‖ψ′(ζu+ (1 − ζ)uN )‖∞‖u− uN‖‖∇θ‖

≤ C(‖η‖ + ‖θ‖)‖∇θ‖

≤
γ

2
‖∆θ‖2 + C19(‖η‖

2 + ‖θ‖2).

Adding (2.41)-(2.43) together gives

d

dt
‖θ‖2 ≤ 2(C18 + C19)(‖η‖

2 + ‖θ‖2).

Using Gronwall’s inequality, we get

‖θ(·, t)‖2 ≤ ‖θ(·, 0)‖2e2(C18+C19)t + ‖η‖2 ≤ CN−6‖∇∆u‖2 ≤ C17N
−6.

By inverse inequality (see [1]), we derive that

‖∇θ(·, t)‖ ≤ CN1‖θ(·, t)‖ ≤ CC17N
−2,

‖∆θ(·, t)‖ ≤ CN2‖θ(·, t)‖ ≤ CC17N
−1.



ATTRACTORS FOR CONVECTIVE CAHN-HILLIARD EQUATION 1455

In the end, by Theorem 2.7, we obtain

‖u(·, t)− uN (·, t)‖H2(Ω) ≤ ‖η(·, t)‖H2(Ω) + ‖θ(·, t)‖H2(Ω)

≤ CN−1‖∇∆(·, t)‖ + CC17N
−1

≤ C(
E0

t
+ E1 + C17)N

−1. �

Therefore, for any compact interval J ∈ (0,+∞),

sup
u0∈H2

p(Ω)
⋂

SN

sup
t∈J

d(SN (t)u0, S(t)u0) → 0 as N → +∞.

Through Theorem I.1.2 of [14], we get the following result.

Theorem 2.9. In addition to the conditions of Theorem 2.7,

d(AN ,A) → 0 as N → +∞.

3. Fully discrete Galerkin spectral approximation

3.1. Existence of approximation global attractors Aτ

N

Let τ be the mesh size in the variable t, tk = kτ , uk = u(x, tk), ∂̄tu
k =

1
τ
(uk − uk−1). The fully discrete Galerkin spectral scheme for solving problem

(1.1)-(1.3) is to find ukN ∈ SN such that

(3.1)

{

(∂̄tu
k
N , v) + γ(∆ukN ,∆v) = (ϕ(ukN ),∆v) − (β · ψ(ukN ),∇v),

u0N = PNu0.

Lemma 3.1. In addition to the conditions of Lemma 2.1, the solution ukN of

problem (2.1) satisfies

‖unN‖2 ≤
1

(1 + c1τ)n
‖u0‖

2 ≤ ‖u0‖
2 , Υ2

0, ∀n ≥ 1,

lim
n→∞

‖unN‖2 ≤ (̺′0)
2.

τ2
n
∑

1

‖∂̄tu
k
N‖2 ≤ C′

1(1 + tn), ∀n ≥ 1,

where the constant C′
1 = C′

1(‖u0‖) is independent of N , n and τ .

Proof. Setting v = ukN in (3.1), we derive that

(∂̄tu
k
N , u

k
N) + γ‖∆ukN‖2 = (ϕ(ukN ),∆ukN)− (β · ψ(ukN ),∇uN).

Note that

(∂̄tu
k
N , u

k
N ) =

1

2
∂̄t‖u

k
N‖2 +

τ

2
‖∂̄tu

k
N‖2,

‖ukN‖2 ≤ C1‖∇uN‖2 ≤ C2
1‖∆u

k
N‖2,

(ϕ(ukN ),∆ukN ) = −(ϕ′(ukN ), |∇ukN |2) ≤ c0‖∇u
k
N‖2,

and
(β · ψ(ukN ),∇uN ) = 0.



1456 X. ZHAO

Summing up, we get

(3.2) ∂̄t‖u
k
N‖2 + τ‖∂̄tu

k
N‖2 +

γ

2C2
1

‖ukN‖2 +

(

γ

2C1
− 2c0

)

‖∇ukN‖2 ≤ 0,

where γ satisfies γ
2C1

− 2c0 > 0. Hence

(3.3) (1 +
γ

2C2
1

τ)‖ukN‖2 ≤ ‖uk−1
N ‖2.

Multiplying (3.3) by (1 + γ

2C2
1

τ)k−1 and summing them for k from 1 to n, we

have
‖unN‖2 ≤ (1 +

γ

2C2
1

τ)−k‖u0‖
2 ≤ ‖u0‖

2 , Υ2
0,

which implies that
lim
n→∞

‖unN‖2 ≤ (̺′0)
2.

Taking the sum of (3.2) for k from k0 + 1 to n, we complete the proof of the
lemma. �

Corollary 3.2. For any given ̺0 > ̺′0 and R0 > 0, if ‖u0‖ ≤ R0, then

‖unN‖2 ≤ ̺20, ∀n ≥ n0 =

(

ln
R2

0

̺20 − (̺′0)
2

)

/ ln(1 + c1τ).

Lemma 3.3. In addition to the conditions of Lemma 2.2, the solution ukN of

problem (2.1) satisfies

‖∇unN‖2 ≤
1

(1 + c3τ)n
‖∇u0‖

2 + c4 ≤ ‖∇u0‖
2 + c4 , Υ2

1, n ≥ 1,

‖∇ukN‖2 ≤ ̺21, ∀n ≥ n0 +N0 , n1,

τ2
n
∑

k=1

‖∂̄t∇u
k
N‖2 ≤ C′

2(1 + tn), ∀n ≥ 1,

where n0 is given by Corollary 3.2, N0 is an arbitrary positive integer, r is an

arbitrary positive number such that N0τ = r, the constant ̺1 is independent of

N , n, τ and ‖u0‖H1 , the two constants C′
2 = C′

2(‖u0‖H1) and Υ1 = Υ1(‖u0‖H1)
are independent of N , n and τ .

Proof. Setting v = ∆ukN in (3.1), we derive that

1

2
∂̄t‖∇u

k
N‖2 +

τ

2
‖∂̄t∇u

k
N‖2 + γ‖∇∆ukN‖2 + (ϕ′(ukN ), |∆ukN |2)

= − (ϕ′′(ukN )|∇ukN |2,∆ukN )− (β · ψ′(ukN )∇ukN ,∆u
k
N ).

Similar to the proof of Lemma 2.2, use Sobolev’s interpolation inequality. Sim-
ple calculations show that

∂̄t‖∇u
k
N‖2 + τ‖∂̄t∇u

k
N‖2 + γ‖∇∆ukN‖2 ≤ C7.

By Poincaré’s inequality, we get

‖∇ukN‖2 ≤ C1‖∆u
k
N‖2 ≤ C2

1‖∇∆ukN‖2.
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Hence

(3.4) ∂̄t‖∇u
k
N‖2 + τ‖∂̄t∇u

k
N‖2 +

γ

2C2
1

‖∇ukN‖2 +
γ

2C1
‖∆ukN‖2 ≤ C7,

that is

(3.5) (1 +
γ

2C2
1

τ)‖∇ukN‖2 ≤ ‖∇uk−1
N ‖2 + C7τ.

Multiplying (3.5) by (1 + γ

2C2
1

τ)k−1 and summing then for k from 1 to n, we

have

‖∇ukN‖2 ≤
1

(1 + γ

2C2
1

τ)n
‖∇u0‖

2 +
2C2

1C7

γ
(3.6)

≤ ‖∇u0‖
2 +

2C2
1C7

γ
, Υ2

1.

It then follows from (3.2) that

(3.7)

(

γ

2C1
− 2c0

)

τ

k0+N0
∑

k0+1

‖∇ukN‖2 ≤ ‖uk0

N ‖2.

By applying the discrete uniform Gronwall’s inequality, we deduce that

‖∇ukN‖2 ≤

(

τ

r

k0+N0
∑

k0+1

‖∇ukN‖2 + τ

k0+N0
∑

k0+1

C7

)

e
−τ

∑k0+N0
k0+1

γ

2C2
1

≤ ̺21, ∀n ≥ n1 = n0 +N0.

Taking the sum of (3.4), we complete the proof of Lemma 3.3. �

Corollary 3.4. Under the hypotheses of Lemma 3.3, we have

‖unN‖q ≤ C(̺0, ̺1), ∀n ≥ n1, 0 < q <∞,

‖unN‖q ≤ C(Υ0,Υ1), ∀n ≥ 1, 0 < q <∞.

Lemma 3.5. In addition to the conditions of Lemma 2.4, we suppose that

u0 ∈ H2
p (Ω) satisfying ‖∆u0‖

2 ≤ R2. Then we have

‖∆unN(x, t)‖2 ≤ ̺22, ∀n ≥ n2 = n1 +N0,

‖∆unN‖2 ≤ Υ2
2, ∀n ≥ 1,

τ2
n
∑

k=1

‖∂̄t∆u
k
N‖2 + τ

n
∑

k=1

‖∇∆ukN‖2 ≤ C′
3(1 + tn), ∀n ≥ 1,

where n1 is given by Lemma 3.3, N0 is an arbitrary positive integer, r is an ar-

bitrary positive number such that N0τ = r, the constant ̺2 is independent of N ,

n, τ , and ‖u0‖H2 , the two constants Υ2 = Υ2(‖u0‖H2) and C′
3 = C′

2(‖u0‖H2)
are independent of N , n and τ .
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Proof. Setting v = ∆2ukN in (3.1), we derive that

1

2
∂̄t‖∆u

k
N‖2 +

τ

2
‖∂̄t∆u

k
N‖2 + γ‖∆2ukN‖2(3.8)

= (∆ϕ(ukN ),∆2ukN ) + (β · ∇ψ(ukN ),∆2ukN).

When k ≥ n1, similar to the proof of Lemma 2.2, use Sobolev’s interpolation
inequality. Simple calculations show that

(β · ∇ψ(ukN ),∆2ukN) ≤
γ

8
‖∆2ukN‖2 +

|β|2

γ
‖ψ′(ukN)∇ukN‖2(3.9)

≤
γ

8
‖∆2ukN‖2 + C‖ukN‖612‖∇u

k
N‖24

≤
γ

4
‖∆2ukN‖2 + C(̺0, ̺1)

and
(3.10)

(∆ϕ(ukN ),∆2ukN)

≤
γ

8
‖∆2ukN‖2 +

2

γ
‖ϕ′(ukN )∆ukN‖2 +

2

γ
‖ϕ′′(ukN )|∇ukN |2‖2

≤
γ

8
‖∆2ukN‖2 + C(‖ukN‖48‖∆u

k
N‖24 + ‖ukN‖24‖∇u

k
N‖48 + ‖∇ukN‖612‖∇u

k
N‖24)

≤
γ

8
‖∆2ukN‖2 + C(‖∆ukN‖24 + ‖∇ukN‖48 + ‖∇ukN‖24)

≤
γ

4
‖∆2ukN‖2 + C(̺0, ̺1).

It then follows from (3.8)-(3.10) that

∂̄t‖∆u
k
N‖2 + τ‖∂̄t∆u

k
N‖2 + γ‖∆2uN‖2 ≤ C(̺0, ̺1).

Hence

(3.11) ∂̄t‖∆u
k
N‖2 + τ‖∂̄t∆u

k
N‖2 + C11(‖∆u

k
N‖2 + ‖∇∆ukN‖2) ≤ C(̺0, ̺1).

By (3.4), we obtain

(3.12)

(

γ

2C1
− 2c0

)

τ

k0+N0
∑

k0+1

‖∆ukN‖2 ≤ ‖∇uk0

N ‖2 + C7r.

By applying the discrete uniform Gronwall’s inequality, we deduce that

‖∆ukN‖2 ≤

(

τ

r

k0+N0
∑

k0+1

‖∆ukN‖2 + τ

k0+N0
∑

k0+1

C(̺0 + ̺1)

)

e−τ
∑k0+N0

k0+1
C11(3.13)

≤ ̺22, ∀n ≥ n2 = n1 +N0.

For k ≥ 1, as the proof of inequality (3.11), we have

(3.14) ∂̄t‖∆u
k
N‖2 + τ‖∂̄t∆u

k
N‖2 + C11(‖∆u

k
N‖2 + ‖∇∆ukN‖2) ≤ C(Υ0,Υ1).
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Taking the sum of (3.14) for k from 1 to n, we obtain
(3.15)

‖∆ukN‖2 + τ2
n
∑

k=1

‖∂̄t∆u
k
N‖2 + C11τ

n
∑

k=1

‖∇∆ukN‖2 ≤ C′
3(1 + tn), ∀n ≥ 1.

Combining (3.13) and (3.15), the proof of this lemma is completed. �

Corollary 3.6. Under the hypotheses of Lemma 3.3, we have

‖unN‖∞ ≤ C(̺0, ̺1), ∀n ≥ n2,

‖unN‖∞ ≤ C(Υ0,Υ1), ∀n ≥ 1.

Theorem 3.7. Suppose that γ is sufficiently large, u0 ∈ H2
p (Ω), ϕ ∈ C2 and

ψ ∈ C1 are also satisfy

ϕ′(r) > 0, ϕ(i)(r) ≤ c|r|k−i + c′, ψ′(r) ≤ cr2
√

ϕ′(r) + c′,

where k ≤ 3 is a positive constant and i = 0, 1, 2. Then the semigroup of

operator {Sτ
N (n)}n≥0 generated by problem (3.1) has a compact global attractor

Aτ
N ⊂ H2

p (Ω)
⋂

SN .

Proof. Set H = H2
p (Ω)

⋂

SN , Sτ
N is a semigroup operator, i.e., the solution

operator generated by problem (3.1).
(I) By using the results of Lemma 3.1, Lemma 3.3, Lemma 3.5, and assuming

that u0N ∈ B = {u0N |‖u0N‖H2 ≤ R0} ⊂ H2
p (Ω)

⋂

SN , we have

‖Sτ
N(n)u0N‖H2 = ‖unN‖H2 ≤ (̺20 + ̺21 + ̺22)

1
2 , ∀n ≥ n1(R).

Therefore

B0 = {unN ∈ H2
p (Ω)

⋂

SN |‖unN‖H2 ≤ (̺20 + ̺21 + ̺22)
1
2 }

is a bounded absorbing set of the semigroup of operator {Sτ
N (n)}n≥0.

(II) From Lemma 3.1, Lemma 3.3, Lemma 3.5 and their corollaries, we have

‖Sτ
N(n)u0N‖H2 ≤ (Υ2

0 +Υ2
1 +Υ2

2)
1
2 , ∀n ≥ 0.

This means that {Sτ
N(n)} is uniformly bounded in H2

p (Ω)
⋂

SN . Since a closed

bounded set is a compact set in the finite dimensional space H2
p (Ω)

⋂

SN , the
operator Sτ

N (n) is uniformly compact for any n ≥ 0.
On the other hand, it is easy to see that the continuity of operator Sτ

N (n)
is from its boundness. Hence, the proof is completed. �

3.2. Convergence of the global attractors Aτ

N

Let GN : L2
p(Ω) → SN be the integral projection operator, i.e., for any given

u ∈ L2(Ω), we have

(3.16) (∇(GNu),∇v) = (u, v), ∀v ∈ SN .

Then for any u, v ∈ L2(Ω), we have (GNu, v) = (u,GNv).



1460 X. ZHAO

Lemma 3.8. For the integral projection operator GN , the following results

hold:
(1) ‖∆(GNu)‖ = ‖PNu‖, ∀u ∈ L2

p(Ω);

(2) ‖GN (∇u)‖ = ‖∇(GNu)‖, ∀u ∈ H1
p (Ω);

(3) ‖GN (∆u)‖ = ‖∇[GN (∇u)]‖ = ‖∆(GNu)‖, ∀u ∈ H2
p (Ω);

(4) ‖G2
N (∆u)‖ = ‖∇[G2

N (∇u)]‖ = ‖∆(G2
Nu)‖, ∀u ∈ H2

p (Ω).

Similar to Lemma 3.5, the following result can be proved easily.

Lemma 3.9. Under the hypotheses of Lemma 3.5, we have the estimates for

the smooth solution u(x, t) of problem (1.1)-(1.3) :
∫ t

0

‖∇ut‖
2ds ≤ C(1 + t),

t‖ut‖
2 +

∫ t

0

s‖∆ut‖
2ds ≤ C(1 + t2),

t2‖∇ut‖
2 +

∫ t

0

s2‖∇∆ut‖
2ds ≤ C(1 + t3),

t3‖∆ut‖
2 +

∫ t

0

s3(‖utt‖
2 + ‖∆2ut‖

2)ds ≤ C(1 + t4),

t4‖∇∆ut‖
2 +

∫ t

0

s4‖∇utt‖
2ds ≤ C(1 + t5),

where the constant C is independent of t.

Theorem 3.10. Suppose that the conditions of Theorem 3.7 hold. Then

d(Aτ
N ,A) → 0 as τ → 0, N → +∞.

Proof. Let ‖u0‖H2 ≤ R0. On account of Theorem 2.7, this theorem will be
proved by taking the error estimates of the solution unN of discrete problem
(3.1). Now, we accomplish them through two steps.

Step 1. Take the error estimates of the solution vn of the linear scheme as
follows:

(3.17)
(∂̄tv

k
N + γ∆2vkN − γ∆vkN −∆ϕ(ukN )− β · ∇ψ(ukN ), ζ) = (−γ∆ukN , ζ),

v0N = PNu0, ∀ζ ∈ SN .

Set uk − vkN = uk = PNu
k + PNu

k − vkN = ρk + θk. Hence, θk satisfies

(3.18)
(∂̄tθ

k + γ∆2θk − γ∆θk − (∂̄tu
k − ukt ), ζ) = 0, ∀ζ ∈ SN ,

θ0 = 0.

Letting ζ = θk in (3.18), we derive that

1

2
∂̄t‖θ

k‖2 +
τ

2
‖∂̄tθ

k‖2 + γ(‖∆θk‖2 + ‖∇θk‖2) = (∂̄tu
k − ukt , θ

k).
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From the definition of GN , we find that

(∂̄tu
k − ukt , θ

k) = (∇[GN (∂̄tu
k − ukt )],∇θ

k) ≤
γ

2
‖∇θk‖2 +

2

γ
‖∇[∂̄tu

k − ukt )]‖.

Noticing that

‖∇[∂̄tu
k − ukt )]‖

2 =
1

τ2
‖

∫ tk

tk−1

(s− tk−1)∇GNuttds‖
2

≤
1

τ2

∫ tk

tk−1

(s− t2k−1

s2
ds

∫ tk

tk−1

s2‖∇GNutt‖
2ds

≤
τ

t2k

∫ tk

tk−1

s2‖∇GNutt‖
2ds.

Therefore, we deduce that

(3.19) ∂̄t‖θ
k‖2+τ‖∂̄tθ

k‖2+2γ‖∆θk‖2+γ‖∇θk‖2 ≤
4τ

γt2k

∫ tk

tk−1

s2‖∇GNutt‖
2ds.

Multiplying (3.19) by t2k, taking the sum for k from 1 to n, using ‖∇GNutt‖ ≤
C‖∇∆ut‖, we get

t2n‖θ
n‖2 + τ2

n
∑

k=1

t2k‖∂̄tθ
k‖2 + γτ

n
∑

k=1

t2k(2‖∆θ
k‖2 + ‖∇θk‖2)(3.20)

≤ 3τ

n
∑

k=1

tk‖θ
k‖2 +

4τ2

γ

n
∑

k=1

∫ tk

tk−1

s2‖∇GNutt‖
2ds

≤ 3τ

n
∑

k=1

tk‖θ
k‖2 + Cτ2

∫ tn

0

s2‖∇∆ut‖
2ds

≤ 3τ

n
∑

k=1

tk‖θ
k‖2 + Cτ2(1 + t3n).

Now, we estimate τ
∑n

k=1 tk‖θ
k‖2 in (3.20). Set ζ = GNθ

k in (3.18), we have

(∂̄tθ
k + γ∆2θk − γ∆θk − (∂̄tu

k − ukt ), GNθ
k) = 0.

Noticing that

(∂̄tθ
k, GNθ

k) =
1

2
∂̄t‖∇GNθ

k‖2,

(γ∆2θk − γ∆θk, GNθ
k) = γ‖∇θk‖2 + γ‖θk‖2,

(∂̄tu
k − ukt , GNθ

k) ≤
γ

2
‖θk‖2 +

1

2γ
‖GN(∂̄tu

k − ukt )‖
2.

Hence

(3.21) ∂̄t‖∇GNθ
k‖2 + γ(2‖∇θk‖2 + ‖θk‖2) ≤

1

γ
‖GN (∂̄tu

k − ukt )‖
2.
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Multiplying (3.21) by τtk, taking the sum for k from 1 to n, using ‖GNutt‖ ≤
C‖∆ut‖, we get

tn‖∇GNθ
n‖2 + γτ

n
∑

k=1

tk(2‖∇θ
k‖2 + ‖θk‖2)(3.22)

≤
τ

γ

n
∑

k=1

tk‖GN(∂̄tu
k − ukt )‖

2 + τ

n
∑

k=1

‖∇GNθ
k‖2

≤
τ2

γ

∫ tn

0

s‖GNutt‖
2ds+ τ

n
∑

k=1

‖∇GNθ
k‖2

≤ Cτ2(1 + t2n) + τ

n
∑

k=1

‖∇GNθ
k‖2.

To estimate τ
∑n

k=1 ‖∇GNθ
k‖2 in (3.22), set ζ = G2

Nθ
k in (3.18). Therefore

(∂̄tθ
k + γ∆2θk − γ∆θk − (∂̄tu

k − ukt ), G
2
Nθ

k) = 0.

Noticing that

(∂̄tθ
k, G2

Nθ
k) =

1

2
∂̄t‖GNθ

k‖2 +
τ

2
‖∇GNθ

k‖2,

(γ∆2θk − γ∆k, G2
Nθ

k) = γ‖θk‖2 + γ‖∇GNθ
k‖2,

(∂̄tu
k − ukt , G

2
Nθ

k) ≤
γ

2
‖∇GNθ

k‖2 +
1

2γ
‖∇G2

N (∂̄tu
k − ukt )‖

2.

Thus

(3.23) ∂̄t‖GNθ
k‖2 + γ(2‖θk‖2 + ‖∇GNθ

k‖2) ≤
1

γ
‖∇G2

N (∂̄tu
k − ukt )‖

2.

Taking the sum of (3.23) for k from 1 to n, applying ‖∇G2
Nutt‖ ≤ C‖∇ut‖, we

obtain

‖GNθ
k‖2 + γτ

n
∑

k=1

(2‖θk‖2 + ‖∇GNθ
k‖2)(3.24)

≤
τ

γ

n
∑

k=1

‖∇G2
N (∂̄tu

k − ukt )‖
2 ≤

τ2

γ

∫ tn

0

‖∇G2
N (∂̄tu

k − ukt )‖
2ds

≤ Cτ2(1 + tn).

Adding (3.20), (3.22) and (3.24) together gives

t2n‖θ
k‖2 + τ2

n
∑

k=1

t2k‖∂̄tθ
k‖2 + γτ

n
∑

k=1

t2k(2‖∆θ
k‖2 + ‖∇θk‖2)(3.25)

+ γτ

n
∑

k=1

tk(2‖∇θ
k‖2 + ‖θk‖2) + γτ

n
∑

k=1

(2‖θk‖2 + ‖∇GNθ
k‖2)

≤ Cτ2(1 + t3n).
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Setting ζ = ∆θk in (3.18), we derive that

∂̄t‖∇θ
k‖2 + 2γ‖∇∆θk‖2 + γ‖∆θk‖2 ≤

1

γ
‖∂̄tu

k − ukt ‖
2.

Multiply above inequality by τt3k, take the sum for k from 1 to n. Simple
calculations show

(3.26) t3n‖∇θ
n‖2 ≤ Cτ2(1 + t4n).

Setting ζ = ∆2θk in (3.18), we derive that

∂̄t‖∆θ
k‖2 + 2γ‖∆2θk‖2 + γ‖∇∆θk‖2 ≤

1

γ
‖∇[∂̄tu

k − ukt ]‖
2.

Multiply above inequality by τt4k, take the sum for k from 1 to n. Simple
calculations show

(3.27) t4n‖∇θ
n‖2 ≤ Cτ2(1 + t5n).

Step 2. Take the error estimates of solution unN of problem (3.1). Set
vkN − ukN = ek. Thus, ek satisfies
(3.28)

(∂̄te
k + γ∆ek + γ∆θk −∆(ϕ(uk)− ϕ(ukN ))− β · ∇(ψ(uk)− ψ(ukN)), ζ) = 0,

∀ζ ∈ SN , k = 1, 2, . . . ,

e0 = 0.

Setting ζ = ek in (3.28), we get

1

2
∂̄t‖e

k‖2 +
τ

2
‖∂̄te

k‖2 + γ‖∆ek‖2

= (∆(ϕ(uk)− ϕ(ukN )) + β · ∇(ψ(uk)− ψ(ukN )), ek)− γ(∆θk, ek)

≤ ‖ϕ′(λ1u
k + (1 − λ1)u

k
N )‖∞‖uk − ukN‖‖∆ek‖

+ |β|‖ψ′(λ2u
k + (1− λ2)u

k
N )‖∞‖uk − ukN‖‖∇ek‖+ γ‖θk‖‖∆ek‖

≤ C‖uk − ukN‖‖∆ek‖+ C‖uk − ukN‖‖∇ek‖+ γ‖θk‖‖∆ek‖

≤
γ

2
‖∆ek‖2 + C(‖ρk‖2 + ‖θk‖2 + ‖ek‖2),

where λ ∈ (0, 1). Hence

∂̄t‖e
k‖2 + τ‖∂̄te

k‖2 + γ‖∆ek‖2 ≤ C(‖ρk‖2 + ‖θk‖2 + ‖ek‖2).

Using discrete Gronwall’s inequality, we obtain

(3.29) ‖en‖2 + γτ‖∆ek‖2 ≤ Cτ
n
∑

k=1

(ρk‖2 + ‖θk‖2) ≤ C(N−4 + τ2).

Setting ζ = ∆ek in (3.28), using Sobolev’s interpolation inequality, we imme-
diately obtain

∂̄t‖∇e
k‖2 + γ‖∇∆ek‖2 ≤ C(‖∇ρk‖2 + ‖∇θk‖2 + ‖ek‖2).
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Multiplying above inequality by τt2k, taking the sum for k from 1 to n, using
(3.29) and (3.25), we get

t2n‖∇e
n‖2 + γτ

n
∑

k=1

‖∇∆ek‖2(3.30)

≤ C(N−2 + τ2 + τ

n
∑

k=1

(‖∇ek‖2 + t2k‖∇θ
k‖2) ≤ C(N−2 + τ2).

Setting ζ = ∆2ek in (3.28), using Sobolev’s interpolation inequality, we imme-
diately obtain

∂̄t‖∆e
k‖2 + γ‖∆2ek‖2 ≤ C(‖∆ρk‖2 + ‖∆θk‖2 + ‖ek‖2)

≤ C(N−2‖∇∆u‖2 + ‖∆θk‖2 + ‖ek‖2).

Multiplying above inequality by τt2k, taking the sum for k from 1 to n, using
(3.29) and (3.25), we get

t2n‖∆e
n‖2 + γτ

n
∑

k=1

‖∆2ek‖2(3.31)

≤ C(N−2 + τ2 + τ
n
∑

k=1

t2k‖∇θ
k‖2) ≤ C(N−2 + τ2).

By using the triangle inequality, we have

‖un − unN‖2H2 ≤ 2(‖ρn‖2H2 + ‖θn‖2H2 + ‖en‖2H2) ≤ C(N−2 + τ2), ∀t ∈ (0,+∞).

Then, we complete the proof of the theorem. �
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