SPECTRAL APPROXIMATIONS OF ATTRACTORS FOR CONVECTIVE CAHN-HILLIARD EQUATION IN TWO DIMENSIONS

Xiaopeng Zhao

Abstract

In this paper, the long time behavior of the convective CahnHilliard equation in two dimensions is considered, semidiscrete and completely discrete spectral approximations are constructed, error estimates of optimal order that hold uniformly on the unbounded time interval $0<t<\infty$ are obtained.

1. Introduction

Recently, more and more people are interested in the convective CahnHilliard equation

$$
\frac{\partial u}{\partial t}+\gamma \Delta^{2} u=\Delta \varphi(u)+\beta \cdot \nabla \psi(u)
$$

which arises naturally as a continuous model for phase transition in binary systems, such as alloys, glass and polymer mixtures (see [2, 12]). Here, $u(x, t)$ denotes the concentration of one of two phases in a system which is undergoing phase separation. The convective term $\beta \cdot \nabla \psi(u)$ which is introduced to study how the phase transition is affected by the steady fluid flow.

In [15], Zaks et al. [15] studied the bifurcations of stationary periodic solutions of a convective Cahn-Hilliard equation; Eden and Kalantarov [3, 4] established some results on the existence of a compact attractor for the convective Cahn-Hilliard equation with periodic boundary conditions in one space dimension and three space dimensions; Based on the Schauder type estimates, Liu [8] not only established the global existence of classical solutions for convective Cahn-Hilliard equation, but also discussed the nonnegativity and the finite speed of propagation of perturbations of solutions for convective Cahn-Hilliard equation; Zhao et al. [17] considered the global attractor for the convective Cahn-Hilliard equation in two space dimensions with the functions $\varphi(s)$ and $\psi(s)$ are polynomials. In addition, Zhao and Liu [18, 19] also considered the

[^0]optimal control problem for convective Cahn-Hilliard equation in 1D and 2D cases.

The study of long time behavior for dissipative nonlinear partial differential equations depended on the results of numerical experimentation to a great extent. For this reason, it is worth studying whether the numerical results are reliable and the calculation schemes are suitable. In [7], based on the finite element method, Hale et al. studied the approximate attractor of some types of nonlinear evolution equation; In [5], based on the finite element method, Elliott and Larsson considered the approximate attractor of Cahn-Hilliard equation; In [10], based on the a prior estimates, Lu and Lu obtained the existence and the convergence of global attractors for a fully discrete classical Galerkin spectral scheme of generalized Kdv-Burgers equation. For more results on the numerical approximation to long time behavior of nonlinear evolutions, we refer the reader to $[9,13,16]$.

In this article, we consider the 2D convective Cahn-Hilliard equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\gamma \Delta^{2} u-\Delta \varphi(u)-\beta \cdot \nabla \psi(u)=0, \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, t>0 \tag{1.1}
\end{equation*}
$$

where γ is a positive constant, β is a vector. Equation (1.1) is supplemented by the following boundary conditions

$$
\begin{equation*}
u\left(x_{1}+2 \pi, x_{2}, t\right)=u\left(x_{1}, x_{2}+2 \pi, t\right)=u\left(x_{1}, x_{2}, t\right), \quad x \in \mathbb{R}^{2}, t \geq 0 \tag{1.2}
\end{equation*}
$$

and initial condition

$$
\begin{equation*}
u(x, 0)=u_{0}(x), x \in \mathbb{R}^{2} \tag{1.3}
\end{equation*}
$$

In this paper, we assume that the initial function has zero mean, i.e., $\int_{\Omega} u_{0}(x) d x$ $=0$, then it follows from (1.3) that $\int_{\Omega} u(x, t) d x=0$ for $t>0$. On the other hand, we use the following notation: $\Omega=[0,2 \pi] \times[0,2 \pi] ;(\cdot, \cdot)$ denotes the inner product of $L^{2}(\Omega),\|\cdot\|_{m}$ the norm of $L^{m}(\Omega)$, and $\|\cdot\|=\|\cdot\|_{L^{2}},\|\cdot\|_{\infty}=\|\cdot\|_{L^{\infty}}$.

The outline of this paper is as follows. In the next section, the existence of discrete attractors \mathcal{A}_{N}^{τ} is obtained by the t-independent prior estimates of discrete solutions; In Section 3, the convergence of \mathcal{A}_{N}^{τ} is proved by the error estimates in $[0,+\infty)$ of the discrete solutions.

Finally in this section, we give the following lemmas which are necessary for further discussion.

Lemma 1.1 (Poincaré inequality [6]). Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded domain and $\|\cdot\|$ is the norm of $L^{2}(\Omega)$. Then we have the Poincaré inequality:

- $\forall v \in H_{0}^{1}(\Omega)$,

$$
\|v\| \leq \frac{|\Omega|}{\pi}\|D v\|, \quad n=1, \quad\|v\| \leq C(\Omega)\|D v\|, \quad n \geq 2
$$

- $\forall v \in H^{1}(\Omega)$,

$$
\|v\|^{2} \leq \frac{|\Omega|^{2}}{2}\|D v\|^{2}+\frac{1}{|\Omega|}\left(\int_{\Omega} v d x\right)^{2}, \quad n=1
$$

$$
\|v\|^{2} \leq C(\Omega)\left[\|D v\|^{2}+\left(\int_{\Omega} v(x) d x\right)^{2}\right], \quad n \geq 2
$$

Lemma 1.2 (Sobolev interpolation inequality [11]). Suppose that $u \in L^{q}(\Omega)$, $D^{m} u \in L^{r}(\Omega), \Omega \subset \mathbb{R}^{n}, 1 \leq r \leq \infty, 0 \leq j \leq m$. Then there exists a constant $c=c(j, m, \Omega, p, q, r)$ independent of u such that

$$
\left\|D^{j} u\right\|_{L^{p}} \leq c\left\|D^{m} u\right\|_{W^{m, r}}^{\alpha}\|u\|_{L^{q}}^{1-\alpha}
$$

where

$$
\frac{1}{p}=\frac{j}{n}+\alpha\left(\frac{1}{r}-\frac{m}{n}\right)+(1-\alpha) \frac{1}{q}, \quad \frac{j}{m}<\alpha<1
$$

2. Semidiscrete Galerkin spectral approximation

For any given positive integer $N, j=\left(j_{1}, j_{2}\right), j \cdot x=j_{1} x_{1}+j_{2} x_{2}$, let $S_{N}=$ $\operatorname{span}\left\{e^{i j \cdot x}:|j| \leq N\right\}$, where $|j|=\max \left\{\left|j_{1}\right|,\left|j_{2}\right|\right\}$. Denote by $P_{N}: L_{p}^{2}(\Omega) \rightarrow S_{N}$ the orthogonal projection operator. For operator P_{N} and functions in S_{N}, we have the following results (see [1]):
(B1) P_{N} commutes with derivation on $H_{p}^{2}(\Omega)$, i.e.,

$$
P_{N} \Delta u=\Delta P_{N} u, \forall u \in H_{p}^{2}(\Omega)
$$

(B2) For any real $0 \leq \mu \leq \sigma$, there is a constant c independent of u, N such that

$$
\left\|u-P_{N} u\right\|_{H^{\mu}} \leq c N^{\mu-\sigma}\|u\|_{H^{\sigma}}, \quad \forall u \in H_{p}^{\sigma}(\Omega)
$$

2.1. Existence of approximation global attractors $\mathcal{A}_{\boldsymbol{N}}$

By using Galerkin method, for each $N \geq|j|$, we find

$$
u_{N}(x, t)=\sum_{|j| \leq N} \beta_{j}(t) v_{j}(x) \in S_{N}
$$

such that $\beta_{j}(t)$ satisfies the following ODEs

$$
\left\{\begin{array}{l}
\left(u_{N t}+\gamma \Delta^{2} u_{N}-\Delta \varphi\left(u_{N}\right)-\beta \cdot \nabla \psi\left(u_{N}\right), v_{j}\right)=0 \tag{2.1}\\
\left(u_{N}(\cdot, 0), v_{j}\right)=\left(u_{N 0}(\cdot), v_{j}\right),|j| \leq N
\end{array}\right.
$$

According to ODE theory, there exists a unique local solution to problem (2.1). What we should do is to show a prior estimates. In addition, we assume that $\left\|u_{0}\right\|_{H^{2}} \leq R$, where R is a positive constant.
Lemma 2.1. Suppose that γ is sufficiently large, $\varphi, \psi \in C^{1}, \varphi^{\prime}(s) \geq-c_{0}$, $u_{0}(x) \in L^{2}(\Omega)$, then the solution $u_{N}(x, t)$ of problem (2.1) satisfies

$$
\begin{gathered}
\left\|u_{N}(x, t)\right\|^{2} \leq\left\|u_{0}\right\|^{2} e^{-c_{1} t}, \quad t \geq 0 \\
\varlimsup_{t \rightarrow \infty}\left\|u_{N}(x, t)\right\|^{2} \leq \rho_{0}^{2}
\end{gathered}
$$

where c_{0}, c_{1} and ρ_{0}^{2} are positive constants independent of N, t.

Proof. Setting $v_{j}=u_{N}(x, t)$ in (2.1), we derive that

$$
\frac{1}{2} \frac{d}{d t}\left\|u_{N}\right\|^{2}+\gamma\left\|\Delta u_{N}\right\|^{2}=\left(\varphi\left(u_{N}\right), \Delta u_{N}\right)+\left(\beta \cdot \nabla \psi\left(u_{N}\right), u_{N}\right)
$$

Then
(2.2) $\frac{1}{2} \frac{d}{d t}\left\|u_{N}\right\|^{2}+\gamma\left\|\Delta u_{N}\right\|^{2}+\left(\varphi^{\prime}\left(u_{N}\right) \nabla u_{N}, \nabla u_{N}\right)=\left(\beta \cdot \nabla \psi\left(u_{N}\right), u_{N}\right)$.

Note that $\varphi^{\prime}(s) \geq-c_{0}$. Hence

$$
\begin{equation*}
\left(\varphi^{\prime}\left(u_{N}\right) \nabla u_{N}, \nabla u_{N}\right) \geq-c_{0}\left\|\nabla u_{N}\right\|^{2} . \tag{2.3}
\end{equation*}
$$

On the other hand, a simple calculation shows that

$$
\begin{equation*}
\left(\beta \cdot \nabla \psi\left(u_{N}\right), u_{N}\right)=\beta \cdot \int_{\Omega} \psi^{\prime}\left(u_{N}\right) u_{N} \nabla u_{N} d x=0 \tag{2.4}
\end{equation*}
$$

By Poincare's inequality, we obtain

$$
\begin{equation*}
\left\|u_{N}\right\|^{2} \leq C(\Omega)\left\{\left\|\nabla u_{N}\right\|^{2}+\left(\int_{\Omega} u_{N} d x\right)^{2}\right\} \leq C_{1}\left\|\nabla u_{N}\right\|^{2} \tag{2.5}
\end{equation*}
$$

We also have

$$
\begin{equation*}
C_{1}\left\|\nabla u_{N}\right\|^{2}=-C_{1} \int_{\Omega} u_{N} \Delta u_{N} d x \leq \frac{1}{2}\left\|u_{N}\right\|^{2}+\frac{C_{1}^{2}}{2}\left\|\Delta u_{N}\right\|^{2} . \tag{2.6}
\end{equation*}
$$

Adding (2.5) and (2.6) together gives

$$
\begin{equation*}
\left\|u_{N}\right\|^{2} \leq C_{1}^{2}\left\|\Delta u_{N}\right\|^{2} \tag{2.7}
\end{equation*}
$$

It then follows from (2.2)-(2.4) and (2.7) that

$$
\begin{equation*}
\frac{d}{d t}\left\|u_{N}\right\|^{2}+\left(\frac{\gamma}{C_{1}^{2}}-\frac{c_{0}^{2}}{\gamma}\right)\left\|u_{N}\right\|^{2} \leq 0 \tag{2.8}
\end{equation*}
$$

where γ is large enough, which satisfies $\frac{\gamma}{C_{1}^{2}}-\frac{c_{0}^{2}}{\gamma}>0$. Then, by uniform Gronwall's inequality, we obtain

$$
\begin{equation*}
\left\|u_{N}(x, t)\right\|^{2} \leq\left\|u_{0}\right\|^{2} e^{-\left(\frac{\gamma}{c_{1}^{2}}-\frac{c_{0}^{2}}{\gamma}\right) t} \tag{2.9}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\varlimsup_{t \rightarrow \infty}\left\|u_{N}(x, t)\right\|^{2} \leq \rho_{0}^{2} \tag{2.10}
\end{equation*}
$$

Therefore, Lemma 2.1 is proved.
Lemma 2.2. In addition to the conditions of Lemma 2.1, we suppose that $u_{0}(x) \in H_{p}^{1}(\Omega), \varphi \in C^{2}$ and $\varphi(s), \psi(s)$ satisfy

$$
\varphi^{(i)}(r) \leq c|r|^{k-i}+c^{\prime}, \quad \psi^{\prime}(r) \leq c r^{2} \sqrt{\varphi^{\prime}(r)}+c^{\prime}
$$

where $k \leq 3$ is a positive constant and $i=0,1,2$. Then the solution $u_{N}(x, t)$ of problem (2.1) satisfies

$$
\left\|\nabla u_{N}(x, t)\right\|^{2} \leq\left\|\nabla u_{0}\right\|^{2} e^{-c_{3} t}+c_{4}, \quad t \geq 0,
$$

$$
\varlimsup_{t \rightarrow \infty}\left\|\nabla u_{N}(x, t)\right\|^{2} \leq \rho_{1}^{2}
$$

where c_{3}, c_{4} and ρ_{1}^{2} are positive constants independent of N, t.
Proof. Setting $v_{j}=\Delta u_{N}(x, t)$ in (2.1), we derive that
(2.11) $\frac{1}{2} \frac{d}{d t}\left\|\nabla u_{N}\right\|^{2}+\gamma\left\|\nabla \Delta u_{N}\right\|^{2}+\left(\Delta \varphi\left(u_{N}\right), \Delta u_{N}\right)+\left(\beta \cdot \nabla \psi\left(u_{N}\right), \Delta u_{N}\right)=0$.

We also have
(2.12) $\quad\left(\Delta \varphi\left(u_{N}\right), \Delta u_{N}\right)=\int_{\Omega} \varphi^{\prime}\left(u_{N}\right)\left|\Delta u_{N}\right|^{2} d x+\int_{\Omega} \varphi^{\prime \prime}\left(u_{N}\right)\left|\nabla u_{N}\right|^{2} \Delta u_{N} d x$.

Combining (2.11) and (2.12) together gives
(2.13)

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|\nabla u_{N}\right\|^{2}+\gamma\left\|\nabla \Delta u_{N}\right\|^{2}+\int_{\Omega} \varphi^{\prime}\left(u_{N}\right)\left|\Delta u_{N}\right|^{2} d x \\
= & -\int_{\Omega} \varphi^{\prime \prime}\left(u_{N}\right)\left|\nabla u_{N}\right|^{2} \Delta u_{N} d x-\beta \cdot \int_{\Omega} \psi^{\prime}\left(u_{N}\right) \nabla u_{N} \Delta u_{N} d x \\
\leq & C\left(\int_{\Omega}\left|u_{N} \Delta u_{N}\right|\left|\nabla u_{N}\right|^{2} d x+\int_{\Omega}\left|u_{N}^{2} \sqrt{\varphi^{\prime}\left(u_{N}\right)} \nabla u_{N} \Delta u_{N}\right| d x+\left\|\nabla u_{N}\right\|^{2}\right) \\
\leq & \frac{C}{2} \int_{\Omega}\left|\nabla u_{N}\right|^{4} d x+\frac{C}{2} \int_{\Omega}\left|u_{N} \Delta u_{N}\right|^{2} d x+\int_{\Omega} \varphi^{\prime}\left(u_{N}\right)\left|\Delta u_{N}\right|^{2} d x \\
& +\frac{C^{2}|\beta|^{2}}{4} \int_{\Omega} u_{N}^{4}\left|\nabla u_{N}\right|^{2} d x+C\left\|\nabla u_{N}\right\|^{2} .
\end{aligned}
$$

Using Sobolev's interpolation inequality, we obtain

$$
\begin{array}{ll}
\left\|u_{N}\right\|_{4} \leq C\left\|\nabla \Delta u_{N}\right\|^{\frac{1}{6}}\left\|u_{N}\right\|^{\frac{5}{6}}, & \left\|\nabla u_{N}\right\|_{4} \leq C\left\|\nabla \Delta u_{N}\right\|^{\frac{1}{2}}\left\|u_{N}\right\|^{\frac{1}{2}}, \\
\left\|u_{N}\right\|_{8} \leq C\left\|\nabla \Delta u_{N}\right\|^{\frac{1}{4}}\left\|u_{N}\right\|^{\frac{3}{4}}, & \left\|\Delta u_{N}\right\|_{4} \leq C\left\|\nabla \Delta u_{N}\right\|^{\frac{5}{6}}\left\|u_{N}\right\|^{\frac{1}{6}} .
\end{array}
$$

By Hölder's inequality and the above inequalities, we get

$$
\begin{gather*}
\left\|u_{N}\right\|_{4}^{2}\left\|\Delta u_{N}\right\|_{4}^{2} \leq \frac{\gamma}{4 C}\left\|\nabla \Delta u_{N}\right\|^{2}+C_{3}, \tag{2.14}\\
\left\|u_{N}\right\|_{8}^{4}\left\|\nabla u_{N}\right\|_{4}^{2} \leq \frac{\gamma}{2 C^{2}|\beta|^{2}}\left\|\nabla \Delta u_{N}\right\|^{2}+C_{4}, \tag{2.15}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|\nabla u_{N}\right\|_{4}^{4} \leq \frac{\gamma}{4 C}\left\|\nabla \Delta u_{N}\right\|^{2}+C_{5} . \tag{2.16}
\end{equation*}
$$

It then follows from (2.13)-(2.16) that

$$
\begin{equation*}
\frac{d}{d t}\left\|\nabla u_{N}\right\|^{2}+\frac{5 \gamma}{4}\left\|\nabla \Delta u_{N}\right\|^{2} \leq 2 C\left\|\nabla u_{N}\right\|^{2}+2\left(C_{3}+C_{4}+C_{5}\right) \tag{2.17}
\end{equation*}
$$

Using Sobolev's interpolation inequality again, we immediately obtain

$$
\left\|\nabla u_{N}\right\| \leq C\left\|\nabla \Delta u_{N}\right\|^{\frac{1}{3}}\left\|u_{N}\right\|^{\frac{2}{3}} .
$$

Hence

$$
\begin{equation*}
2 C\left\|\nabla u_{N}\right\|^{2} \leq \frac{\gamma}{4}\left\|\nabla \Delta u_{N}\right\|^{2}+C_{6} . \tag{2.18}
\end{equation*}
$$

Using (2.17) and (2.18), we deduce that

$$
\begin{equation*}
\frac{d}{d t}\left\|\nabla u_{N}\right\|^{2}+\gamma\left\|\nabla u_{N}\right\|^{2} \leq C_{7} \tag{2.19}
\end{equation*}
$$

where $C_{7}=2\left(C_{3}+C_{4}+C_{5}\right)+C_{6}$. By uniform Gronwall's inequality, we obtain

$$
\begin{equation*}
\left\|\nabla u_{N}\right\|^{2} \leq\left\|\nabla u_{0}\right\|^{2} e^{-\gamma t}+\frac{C_{7}}{\gamma} \tag{2.20}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\varlimsup_{t \rightarrow \infty}\left\|\nabla u_{N}(x, t)\right\|^{2} \leq \rho_{1}^{2} \tag{2.21}
\end{equation*}
$$

where $\rho_{1}^{2}=\frac{C_{7}}{\gamma}$. Therefore, Lemma 2.2 is proved.
Corollary 2.3. In addition to the conditions of Lemma 2.2, there exists a unique solution $u_{N}(x, t)$ for problem (2.1) in $(0,+\infty)$, which satisfies

$$
\left\|u_{N}(x, t)\right\|_{p} \leq C(R), \quad 0<p<+\infty, t \geq 0
$$

where $C(R)$ is a positive constant dependent only on R.
Lemma 2.4. In addition to the conditions of Lemma 2.2, we suppose that $u_{0} \in H_{p}^{2}(\Omega)$, then the solution $u_{N}(x, t)$ of problem (2.1) satisfies

$$
\begin{gathered}
\left\|\Delta u_{N}(x, t)\right\|^{2} \leq\left\|\Delta u_{0}\right\|^{2} e^{-c_{5} t}+c_{6}, \quad t \geq 0, \\
\lim _{t \rightarrow \infty}\left\|\Delta u_{N}(x, t)\right\|^{2} \leq \rho_{2}^{2}
\end{gathered}
$$

where c_{5}, c_{6} and ρ_{2}^{2} are positive constants independent of N, t.
Proof. Setting $v_{j}=\Delta^{2} u_{N}(x, t)$ in (2.1), we derive that
(2.22) $\frac{1}{2} \frac{d}{d t}\left\|\Delta u_{N}\right\|^{2}+\gamma\left\|\Delta^{2} u_{N}\right\|^{2}=\left(\Delta \varphi\left(u_{N}\right), \Delta^{2} u_{N}\right)+\left(\beta \cdot \nabla \psi\left(u_{N}\right), \Delta^{2} u_{N}\right)$.

We also have

$$
\begin{align*}
& \left(\Delta \varphi\left(u_{N}\right), \Delta^{2} u_{N}\right) \tag{2.23}\\
= & \left(\varphi^{\prime}\left(u_{N}\right) \Delta u_{N}+\varphi^{\prime \prime}\left(u_{N}\right)\left|\nabla u_{N}\right|^{2}, \Delta^{2} u_{N}\right) \\
\leq & \frac{\gamma}{4}\left\|\Delta^{2} u_{N}\right\|^{2}+\frac{2}{\gamma}\left\|\varphi^{\prime}\left(u_{N}\right) \Delta u_{N}\right\|^{2}+\frac{2}{\gamma}\left\|\varphi^{\prime \prime}\left(u_{N}\right)\left|\nabla u_{N}\right|^{2}\right\|^{2},
\end{align*}
$$

and

$$
\begin{align*}
\left(\beta \cdot \nabla \psi\left(u_{N}\right), \Delta^{2} u_{N}\right) & =\beta \cdot\left(\psi\left(u_{N}\right) \nabla u_{N}, \Delta^{2} u_{N}\right) \tag{2.24}\\
& \leq \frac{\gamma}{4}\left\|\Delta^{2} u_{N}\right\|^{2}+\frac{|\beta|^{2}}{\gamma}\left\|\psi^{\prime}\left(u_{N}\right) \nabla u_{N}\right\|^{2} .
\end{align*}
$$

Adding (2.22)-(2.24) together gives

$$
\begin{align*}
& \frac{d}{d t}\left\|\Delta u_{N}\right\|^{2}+\gamma\left\|\Delta^{2} u_{N}\right\|^{2} \tag{2.25}\\
\leq & \frac{4}{\gamma} \int_{\Omega}\left|\varphi^{\prime}\left(u_{N}\right) \Delta u_{N}\right|^{2} d x+\left.\left.\frac{4}{\gamma} \int_{\Omega}\left|\varphi^{\prime \prime}\left(u_{N}\right)\right| \nabla u_{N}\right|^{2}\right|^{2} d x \\
& +\frac{2|\beta|^{2}}{\gamma} \int_{\Omega} u_{N}^{4}\left|\varphi^{\prime}\left(u_{N}\right) \nabla u_{N}\right|^{2} d x \\
\leq & C\left(\int_{\Omega} u_{N}^{4}\left|\Delta u_{N}\right|^{2} d x+\int_{\Omega} u_{N}^{2}\left|\nabla u_{N}\right|^{4} d x+\int_{\Omega} u_{N}^{6}\left|\nabla u_{N}\right|^{2} d x\right) \\
\leq & C\left(\left\|\Delta u_{N}\right\|_{4}^{2}+\left\|\nabla u_{N}\right\|_{8}^{4}+\left\|\nabla u_{N}\right\|_{4}^{2}\right) .
\end{align*}
$$

By Sobolev's interpolation inequality, we conclude

$$
\begin{align*}
& \left\|\Delta u_{N}\right\|_{4}^{2} \leq\left(C\left\|\Delta^{2} u_{N}\right\|^{\frac{5}{8}}\left\|u_{N}\right\|^{\frac{3}{8}}\right)^{2} \leq \frac{\gamma}{6}\left\|\Delta^{2} u_{N}\right\|^{2}+C_{8}, \tag{2.26}\\
& \left\|\nabla u_{N}\right\|_{4}^{2} \leq\left(C\left\|\Delta^{2} u_{N}\right\|^{\frac{3}{8}}\left\|u_{N}\right\|^{\frac{5}{8}}\right)^{2} \leq \frac{\gamma}{6}\left\|\Delta^{2} u_{N}\right\|^{2}+C_{9}, \tag{2.27}\\
& \left\|\nabla u_{N}\right\|_{8}^{4} \leq\left(C\left\|\Delta^{2} u_{N}\right\|^{\frac{7}{16}}\left\|u_{N}\right\|^{\frac{11}{16}}\right)^{4} \leq \frac{\gamma}{6}\left\|\Delta^{2} u_{N}\right\|^{2}+C_{10} . \tag{2.28}
\end{align*}
$$

It then follows from (2.25)-(2.28) that

$$
\frac{d}{d t}\left\|\Delta u_{N}\right\|^{2}+\frac{\gamma}{2}\left\|\Delta^{2} u_{N}\right\|^{2} \leq C_{8}+C_{9}+C_{10} .
$$

By a Calderón-Zygmund type estimate, we have

$$
\begin{equation*}
\frac{d}{d t}\left\|\Delta u_{N}\right\|^{2}+C_{11}\left(\left\|\Delta u_{N}\right\|^{2}+\left\|\nabla \Delta u_{N}\right\|^{2}\right) \leq C_{12} \tag{2.29}
\end{equation*}
$$

Using uniform Gronwall's inequality, we derive that

$$
\begin{equation*}
\left\|\Delta u_{N}\right\|^{2} \leq\left\|\Delta u_{0}\right\|^{2} e^{-C_{11} t}+\frac{C_{12}}{C_{11}} \tag{2.30}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\varlimsup_{t \rightarrow \infty}\left\|\Delta u_{N}(x, t)\right\|^{2} \leq \rho_{2}^{2} \tag{2.31}
\end{equation*}
$$

where $\rho_{2}^{2}=\frac{C_{12}}{C_{11}}$. Then, Lemma 2.4 is proved.
Corollary 2.5. In addition to the conditions of Lemma 2.4, there exists a unique solution $u_{N}(x, t)$ for problem (2.1) in $(0,+\infty)$, which satisfies

$$
\left\|u_{N}(x, t)\right\|_{\infty} \leq C(R), \quad t \geq 0
$$

where $C(R)$ is a positive constant dependent only on R.
Lemma 2.6. In addition to the conditions of Lemma 2.4, we suppose that $\varphi \in C^{3}, \psi \in C^{2}$, then the solution $u_{N}(x, t)$ of problem (2.1) satisfies

$$
\left\|\nabla \Delta u_{N}(x, t)\right\| \leq \frac{E_{0}}{t}+E_{1}, \quad t>0
$$

where E_{0} is a positive constant dependent on R and t, independent of N.

Proof. Setting $v_{j}=t^{2} \Delta^{3} u_{N}(x, t)$ in (2.1), we derive that

$$
\begin{equation*}
\left(u_{N t}+\gamma \Delta^{2} u_{N}-\Delta \varphi\left(u_{N}\right)-\beta \cdot \psi\left(u_{N}\right), t^{2} \Delta^{3} u_{N}\right)=0 \tag{2.32}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left(u_{N t}, t^{2} \Delta^{3} u_{N}\right)=-\frac{1}{2} \frac{d}{d t}\left\|t \nabla \Delta u_{N}\right\|^{2}+\left\|t^{\frac{1}{2}} \nabla \Delta u_{N}\right\|^{2} \tag{2.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\gamma \Delta^{2} u_{N}, t^{2} \Delta^{3} u_{N}\right)=-\gamma\left\|\nabla \Delta^{2} u_{N}\right\|^{2} \tag{2.34}
\end{equation*}
$$

In addition, we have
(2.35) $\quad\left|\left(\beta \cdot \psi\left(u_{N}\right), t^{2} \Delta^{3} u_{N}\right)\right|$
$=\left|\int_{\Omega} t^{2} \nabla\left(\psi^{\prime}\left(u_{N}\right) \nabla u_{N}\right) \nabla \Delta^{2} u_{N} d x\right|$
$\leq \int_{\Omega} t^{2}\left|\psi^{\prime}\left(u_{N}\right) \Delta u_{N} \nabla \Delta^{2} u_{N}\right| d x+\left.\int_{\Omega} t^{2}\left|\psi^{\prime \prime}\left(u_{N}\right)\right| \nabla u_{N}\right|^{2} \nabla \Delta^{2} u_{N} \mid d x$
$\leq C\left(\int_{\Omega} t^{2}\left|\Delta u_{N} \nabla \Delta^{2} u_{N}\right| d x+\left.\int_{\Omega} t^{2}| | \nabla u_{N}\right|^{2} \nabla \Delta^{2} u_{N} \mid d x\right)$
$\leq \frac{\gamma}{2}\left\|t \nabla \Delta^{2} u_{N}\right\|^{2}+C\left(\left\|\Delta u_{N}\right\|^{2}+\left\|\nabla u_{N}\right\|_{4}^{4}\right)$
$\leq \frac{\gamma}{2}\left\|t \nabla \Delta^{2} u_{N}\right\|^{2}+C_{13}$
and
(2.36) $\left|\left(\Delta \varphi\left(u_{N}\right), t^{2} \Delta^{3} u_{N}\right)\right|$
$=\left|\left(\nabla \Delta \varphi\left(u_{N}\right), t^{2} \nabla \Delta^{2} u_{N}\right)\right|$
$\leq \int_{\Omega} t^{2}\left|\varphi^{\prime}\left(u_{N}\right) \nabla \Delta u_{N} \nabla \Delta^{2} u_{N}\right| d x+3 \int_{\Omega} t^{2}\left|\varphi^{\prime \prime}\left(u_{N}\right) \nabla u_{N} \Delta u_{N} \nabla \Delta^{2} u_{N}\right| d x$ $+\left.\int_{\Omega} t^{2}\left|\varphi^{\prime \prime \prime}\left(u_{N}\right)\right| \nabla u_{N}\right|^{3} \nabla \Delta^{2} u_{N} \mid d x$
$\leq C\left(\int_{\Omega} t^{2}\left|\nabla \Delta u_{N} \nabla \Delta^{2} u_{N}\right| d x+3 \int_{\Omega} t^{2}\left|\nabla u_{N} \Delta u_{N} \nabla \Delta^{2} u_{N}\right| d x\right.$ $\left.+\left.\int_{\Omega} t^{2}| | \nabla u_{N}\right|^{3} \nabla \Delta^{2} u_{N} \mid d x\right)$
$\leq \frac{\gamma}{2}\left\|t \nabla \Delta^{2} u_{N}\right\|^{2}+C\left(\left\|\nabla \Delta u_{N}\right\|^{2}+\left\|\nabla u_{N} \Delta u_{N}\right\|^{2}+\left\|\nabla u_{N}\right\|_{6}^{6}\right)$
$\leq \frac{\gamma}{2}\left\|t \nabla \Delta^{2} u_{N}\right\|^{2}+C\left(\left\|\nabla \Delta u_{N}\right\|^{2}+\left\|\nabla u_{N}\right\|_{\infty}^{2}\left\|\Delta u_{N}\right\|^{2}+\left\|\nabla u_{N}\right\|_{6}^{6}\right)$
$\leq \frac{\gamma}{2}\left\|t \nabla \Delta^{2} u_{N}\right\|^{2}+C_{14}\left\|\nabla \Delta u_{N}\right\|^{2}+C_{15}$.

We have used Sobolev embedding $H^{3}(\Omega) \hookrightarrow W^{1, \infty}(\Omega)$ in (2.36), which is correct in 2D case. Combing (2.32)-(2.36) together gives

$$
\begin{equation*}
\frac{d}{d t}\left\|t \nabla \Delta u_{N}\right\|^{2} \leq 2 C_{14}\left\|\nabla \Delta u_{N}\right\|^{2}+2\left(C_{13}+C_{15}\right) \tag{2.37}
\end{equation*}
$$

It then follows from (2.29) and (2.37) that

$$
\begin{equation*}
\left\|\nabla \Delta u_{N}(x, t)\right\| \leq \frac{C_{16}}{t}+C_{17}, \quad t>0 \tag{2.38}
\end{equation*}
$$

where C_{16} and C_{17} are two positive constant dependent on R and t, independent of N.

Now, from Lemma 2.1, Lemma 2.2, Lemma 2.4, Lemma 2.6 and the compact argument, we have:
Theorem 2.7. Suppose that γ is sufficiently large, $u_{0} \in H_{p}^{2}(\Omega), \varphi \in C^{2}$ and $\psi \in C^{1}$ also satisfy

$$
\varphi^{\prime}(r)>0, \quad \varphi^{(i)}(r) \leq c|r|^{k-i}+c^{\prime}, \quad \psi^{\prime}(r) \leq c r^{2} \sqrt{\varphi^{\prime}(r)}+c^{\prime},
$$

where $k \leq 3$ is a positive constant and $i=0,1,2$. Then there exists a unique global solution $u(x, t)$ for problem (1.1)-(1.3), such that

$$
u(x, t) \in L^{\infty}\left(\mathbb{R}^{+} ; H_{p}^{2}(\Omega)\right) \bigcap L^{2}\left(\mathbb{R}^{+} ; H_{p}^{4}(\Omega)\right)
$$

Furthermore, if $\varphi \in C^{3}, \psi \in C^{2}$, then

$$
\left\|\nabla \Delta u_{N}(x, t)\right\| \leq \frac{E_{0}}{t}+E_{1}, \quad t>0
$$

where E_{0} and E_{1} are two positive constant dependent on R and t.
In the conditions of Theorem 2.7, the solution operator of problem (1.1)(1.3) generate an operator semigroup $S(t)$. Similarly, for the solution $u(x, t)$ of problem (1.1)-(1.3), we also have the a prior estimates as Lemma 2.1, Lemma 2.2, Lemma 2.4 and Lemma 2.6. Thus, the operator $S(t)$ is a continuous operator from $H_{p}^{2}(\Omega)$ to itself. On the other hand, set $B_{0}=\left\{u \in H_{p}^{2}(\Omega)\right.$: $\left.\|u\|_{H^{2}(\Omega)}^{2} \leq 2\left(\rho_{0}^{2}+\rho_{1}^{2}+\rho_{2}^{2}\right)\right\}$. It is easy to see that B_{0} is an absorbing set, and $S(t)$ is uniform compact for t large enough. Therefore, the semigroup of operator $S(t)$ has a compact global attractor $\mathcal{A} \subset H_{p}^{2}(\Omega)$. It is similar completely, the solution operator of problem (2.1) also generate an operator semigroup $S_{N}(t)$ on S_{N}, which possesses an attractor \mathcal{A}_{N}.

2.2. Convergence of the global attractors $\mathcal{A}_{\boldsymbol{N}}$

Define the semidistance of two sets A and B in $H^{2}(\Omega)$ as follows

$$
d(A, B)=\sup _{x \in A} \inf _{y \in B}\|x-y\|_{H^{2}(\Omega)} .
$$

We say that \mathcal{A}_{N} converge to \mathcal{A}, if

$$
d\left(\mathcal{A}_{N}, \mathcal{A}\right) \rightarrow 0 \quad \text { as } N \rightarrow+\infty
$$

Set

$$
\begin{equation*}
u-u_{N}=u-P_{N} u+P_{N} u-u_{N}=\eta+\theta . \tag{2.39}
\end{equation*}
$$

Based on (1.1)-(1.3) and (2.1), θ satisfies

$$
\left\{\begin{array}{l}
\left(\theta_{t}, v\right)+\gamma(\Delta \theta, \Delta v)=\left(\varphi(u)-\varphi\left(u_{N}\right), \Delta v\right)-\beta \cdot\left(\psi(u)-\psi\left(u_{N}\right), \nabla v\right), \forall v \in S_{N} \tag{2.40}\\
\theta(x, 0)=0
\end{array}\right.
$$

Theorem 2.8. In addition to the conditions of Theorem 2.7, we suppose that $u(x, t)$ is the solution of problem (1.1)-(1.3) and $u_{N}(x, t)$ is the solution of semi-discrete approximation (2.1). Then

$$
\left\|u(x, t)-u_{N}(x, t)\right\|_{H^{2}} \leq C\left(\frac{E_{0}}{t}+E_{1}+C_{17}\right) N^{-1}
$$

where C_{17} is a positive constant dependent on $\left\|u_{0}\right\|_{H^{2}}$.
Proof. Setting $v=\theta$ in (2.40), we deduce that
(2.41) $\frac{1}{2} \frac{d}{d t}\|\theta\|^{2}+\gamma\|\Delta \theta\|^{2}=\left(\varphi(u)-\varphi\left(u_{N}\right), \Delta \theta\right)-\left(\beta \cdot\left[\psi(u)-\psi\left(u_{N}\right)\right], \nabla \theta\right)$.

Note that
(2.42) $\quad\left(\varphi(u)-\varphi\left(u_{N}\right), \Delta \theta\right)=\left(\varphi^{\prime}\left(\xi u+(1-\xi) u_{N}\right)\left(u-u_{N}\right), \Delta \theta\right)$

$$
\leq\left\|\varphi^{\prime}\left(\xi u+(1-\xi) u_{N}\right)\right\|_{\infty}\left\|u-u_{N}\right\|\|\Delta \theta\|
$$

$$
\leq C(\|\eta\|+\|\theta\|)\|\Delta \theta\|
$$

$$
\leq \frac{\gamma}{2}\|\Delta \theta\|^{2}+C_{18}\left(\|\eta\|^{2}+\|\theta\|^{2}\right)
$$

and

$$
\begin{align*}
-\left(\beta \cdot\left[\psi(u)-\psi\left(u_{N}\right)\right], \nabla \theta\right) & =-\left(\beta \cdot\left[\psi^{\prime}\left(\zeta u+(1-\zeta) u_{N}\right)\left(u-u_{N}\right)\right], \nabla \theta\right) \tag{2.43}\\
& \leq|\beta|\left\|\psi^{\prime}\left(\zeta u+(1-\zeta) u_{N}\right)\right\|_{\infty}\left\|u-u_{N}\right\|\|\nabla \theta\| \\
& \leq C(\|\eta\|+\|\theta\|)\|\nabla \theta\| \\
& \leq \frac{\gamma}{2}\|\Delta \theta\|^{2}+C_{19}\left(\|\eta\|^{2}+\|\theta\|^{2}\right) .
\end{align*}
$$

Adding (2.41)-(2.43) together gives

$$
\frac{d}{d t}\|\theta\|^{2} \leq 2\left(C_{18}+C_{19}\right)\left(\|\eta\|^{2}+\|\theta\|^{2}\right)
$$

Using Gronwall's inequality, we get

$$
\|\theta(\cdot, t)\|^{2} \leq\|\theta(\cdot, 0)\|^{2} e^{2\left(C_{18}+C_{19}\right) t}+\|\eta\|^{2} \leq C N^{-6}\|\nabla \Delta u\|^{2} \leq C_{17} N^{-6} .
$$

By inverse inequality (see [1]), we derive that

$$
\begin{aligned}
& \|\nabla \theta(\cdot, t)\| \leq C N^{1}\|\theta(\cdot, t)\| \leq C C_{17} N^{-2} \\
& \|\Delta \theta(\cdot, t)\| \leq C N^{2}\|\theta(\cdot, t)\| \leq C C_{17} N^{-1}
\end{aligned}
$$

In the end, by Theorem 2.7, we obtain

$$
\begin{aligned}
\left\|u(\cdot, t)-u_{N}(\cdot, t)\right\|_{H^{2}(\Omega)} & \leq\|\eta(\cdot, t)\|_{H^{2}(\Omega)}+\|\theta(\cdot, t)\|_{H^{2}(\Omega)} \\
& \leq C N^{-1}\|\nabla \Delta(\cdot, t)\|+C C_{17} N^{-1} \\
& \leq C\left(\frac{E_{0}}{t}+E_{1}+C_{17}\right) N^{-1} .
\end{aligned}
$$

Therefore, for any compact interval $J \in(0,+\infty)$,

$$
\sup _{u_{0} \in H_{p}^{2}(\Omega) \cap S_{N}} \sup _{t \in J} d\left(S_{N}(t) u_{0}, S(t) u_{0}\right) \rightarrow 0 \quad \text { as } N \rightarrow+\infty
$$

Through Theorem I.1.2 of [14], we get the following result.
Theorem 2.9. In addition to the conditions of Theorem 2.7,

$$
d\left(\mathcal{A}_{N}, \mathcal{A}\right) \rightarrow 0 \quad \text { as } N \rightarrow+\infty
$$

3. Fully discrete Galerkin spectral approximation

3.1. Existence of approximation global attractors \mathcal{A}_{N}^{τ}

Let τ be the mesh size in the variable $t, t_{k}=k \tau, u^{k}=u\left(x, t_{k}\right), \bar{\partial}_{t} u^{k}=$ $\frac{1}{\tau}\left(u^{k}-u^{k-1}\right)$. The fully discrete Galerkin spectral scheme for solving problem (1.1)-(1.3) is to find $u_{N}^{k} \in S_{N}$ such that

$$
\left\{\begin{array}{l}
\left(\bar{\partial}_{t} u_{N}^{k}, v\right)+\gamma\left(\Delta u_{N}^{k}, \Delta v\right)=\left(\varphi\left(u_{N}^{k}\right), \Delta v\right)-\left(\beta \cdot \psi\left(u_{N}^{k}\right), \nabla v\right), \tag{3.1}\\
u_{N}^{0}=P_{N} u_{0}
\end{array}\right.
$$

Lemma 3.1. In addition to the conditions of Lemma 2.1, the solution u_{N}^{k} of problem (2.1) satisfies

$$
\begin{gathered}
\left\|u_{N}^{n}\right\|^{2} \leq \frac{1}{\left(1+c_{1} \tau\right)^{n}}\left\|u_{0}\right\|^{2} \leq\left\|u_{0}\right\|^{2} \triangleq \Upsilon_{0}^{2}, \quad \forall n \geq 1 \\
\overline{\lim _{n \rightarrow \infty}}\left\|u_{N}^{n}\right\|^{2} \leq\left(\varrho_{0}^{\prime}\right)^{2} \\
\tau^{2} \sum_{1}^{n}\left\|\bar{\partial}_{t} u_{N}^{k}\right\|^{2} \leq C_{1}^{\prime}\left(1+t_{n}\right), \quad \forall n \geq 1
\end{gathered}
$$

where the constant $C_{1}^{\prime}=C_{1}^{\prime}\left(\left\|u_{0}\right\|\right)$ is independent of N, n and τ.
Proof. Setting $v=u_{N}^{k}$ in (3.1), we derive that

$$
\left(\bar{\partial}_{t} u_{N}^{k}, u_{N}^{k}\right)+\gamma\left\|\Delta u_{N}^{k}\right\|^{2}=\left(\varphi\left(u_{N}^{k}\right), \Delta u_{N}^{k}\right)-\left(\beta \cdot \psi\left(u_{N}^{k}\right), \nabla u_{N}\right)
$$

Note that

$$
\begin{gathered}
\left(\bar{\partial}_{t} u_{N}^{k}, u_{N}^{k}\right)=\frac{1}{2} \bar{\partial}_{t}\left\|u_{N}^{k}\right\|^{2}+\frac{\tau}{2}\left\|\bar{\partial}_{t} u_{N}^{k}\right\|^{2} \\
\left\|u_{N}^{k}\right\|^{2} \leq C_{1}\left\|\nabla u_{N}\right\|^{2} \leq C_{1}^{2}\left\|\Delta u_{N}^{k}\right\|^{2} \\
\left(\varphi\left(u_{N}^{k}\right), \Delta u_{N}^{k}\right)=-\left(\varphi^{\prime}\left(u_{N}^{k}\right),\left|\nabla u_{N}^{k}\right|^{2}\right) \leq c_{0}\left\|\nabla u_{N}^{k}\right\|^{2},
\end{gathered}
$$

and

$$
\left(\beta \cdot \psi\left(u_{N}^{k}\right), \nabla u_{N}\right)=0
$$

Summing up, we get

$$
\begin{equation*}
\bar{\partial}_{t}\left\|u_{N}^{k}\right\|^{2}+\tau\left\|\bar{\partial}_{t} u_{N}^{k}\right\|^{2}+\frac{\gamma}{2 C_{1}^{2}}\left\|u_{N}^{k}\right\|^{2}+\left(\frac{\gamma}{2 C_{1}}-2 c_{0}\right)\left\|\nabla u_{N}^{k}\right\|^{2} \leq 0 \tag{3.2}
\end{equation*}
$$

where γ satisfies $\frac{\gamma}{2 C_{1}}-2 c_{0}>0$. Hence

$$
\begin{equation*}
\left(1+\frac{\gamma}{2 C_{1}^{2}} \tau\right)\left\|u_{N}^{k}\right\|^{2} \leq\left\|u_{N}^{k-1}\right\|^{2} \tag{3.3}
\end{equation*}
$$

Multiplying (3.3) by $\left(1+\frac{\gamma}{2 C_{1}^{2}} \tau\right)^{k-1}$ and summing them for k from 1 to n, we have

$$
\left\|u_{N}^{n}\right\|^{2} \leq\left(1+\frac{\gamma}{2 C_{1}^{2}} \tau\right)^{-k}\left\|u_{0}\right\|^{2} \leq\left\|u_{0}\right\|^{2} \triangleq \Upsilon_{0}^{2}
$$

which implies that

$$
{\overline{\lim _{n \rightarrow \infty}}\left\|u_{N}^{n}\right\|^{2} \leq\left(\varrho_{0}^{\prime}\right)^{2} ~}_{\text {. }}
$$

Taking the sum of (3.2) for k from $k_{0}+1$ to n, we complete the proof of the lemma.
Corollary 3.2. For any given $\varrho_{0}>\varrho_{0}^{\prime}$ and $R_{0}>0$, if $\left\|u_{0}\right\| \leq R_{0}$, then

$$
\left\|u_{N}^{n}\right\|^{2} \leq \varrho_{0}^{2}, \quad \forall n \geq n_{0}=\left(\ln \frac{R_{0}^{2}}{\varrho_{0}^{2}-\left(\varrho_{0}^{\prime}\right)^{2}}\right) / \ln \left(1+c_{1} \tau\right)
$$

Lemma 3.3. In addition to the conditions of Lemma 2.2, the solution u_{N}^{k} of problem (2.1) satisfies

$$
\begin{gathered}
\left\|\nabla u_{N}^{n}\right\|^{2} \leq \frac{1}{\left(1+c_{3} \tau\right)^{n}}\left\|\nabla u_{0}\right\|^{2}+c_{4} \leq\left\|\nabla u_{0}\right\|^{2}+c_{4} \triangleq \Upsilon_{1}^{2}, \quad n \geq 1, \\
\left\|\nabla u_{N}^{k}\right\|^{2} \leq \varrho_{1}^{2}, \quad \forall n \geq n_{0}+N_{0} \triangleq n_{1}, \\
\tau^{2} \sum_{k=1}^{n}\left\|\bar{\partial}_{t} \nabla u_{N}^{k}\right\|^{2} \leq C_{2}^{\prime}\left(1+t_{n}\right), \quad \forall n \geq 1,
\end{gathered}
$$

where n_{0} is given by Corollary 3.2, N_{0} is an arbitrary positive integer, r is an arbitrary positive number such that $N_{0} \tau=r$, the constant ϱ_{1} is independent of N, n, τ and $\left\|u_{0}\right\|_{H^{1}}$, the two constants $C_{2}^{\prime}=C_{2}^{\prime}\left(\left\|u_{0}\right\|_{H^{1}}\right)$ and $\Upsilon_{1}=\Upsilon_{1}\left(\left\|u_{0}\right\|_{H^{1}}\right)$ are independent of N, n and τ.

Proof. Setting $v=\Delta u_{N}^{k}$ in (3.1), we derive that

$$
\begin{aligned}
& \frac{1}{2} \bar{\partial}_{t}\left\|\nabla u_{N}^{k}\right\|^{2}+\frac{\tau}{2}\left\|\bar{\partial}_{t} \nabla u_{N}^{k}\right\|^{2}+\gamma\left\|\nabla \Delta u_{N}^{k}\right\|^{2}+\left(\varphi^{\prime}\left(u_{N}^{k}\right),\left|\Delta u_{N}^{k}\right|^{2}\right) \\
= & -\left(\varphi^{\prime \prime}\left(u_{N}^{k}\right)\left|\nabla u_{N}^{k}\right|^{2}, \Delta u_{N}^{k}\right)-\left(\beta \cdot \psi^{\prime}\left(u_{N}^{k}\right) \nabla u_{N}^{k}, \Delta u_{N}^{k}\right) .
\end{aligned}
$$

Similar to the proof of Lemma 2.2, use Sobolev's interpolation inequality. Simple calculations show that

$$
\bar{\partial}_{t}\left\|\nabla u_{N}^{k}\right\|^{2}+\tau\left\|\bar{\partial}_{t} \nabla u_{N}^{k}\right\|^{2}+\gamma\left\|\nabla \Delta u_{N}^{k}\right\|^{2} \leq C_{7} .
$$

By Poincaré's inequality, we get

$$
\left\|\nabla u_{N}^{k}\right\|^{2} \leq C_{1}\left\|\Delta u_{N}^{k}\right\|^{2} \leq C_{1}^{2}\left\|\nabla \Delta u_{N}^{k}\right\|^{2}
$$

Hence

$$
\begin{equation*}
\bar{\partial}_{t}\left\|\nabla u_{N}^{k}\right\|^{2}+\tau\left\|\bar{\partial}_{t} \nabla u_{N}^{k}\right\|^{2}+\frac{\gamma}{2 C_{1}^{2}}\left\|\nabla u_{N}^{k}\right\|^{2}+\frac{\gamma}{2 C_{1}}\left\|\Delta u_{N}^{k}\right\|^{2} \leq C_{7}, \tag{3.4}
\end{equation*}
$$

that is

$$
\begin{equation*}
\left(1+\frac{\gamma}{2 C_{1}^{2}} \tau\right)\left\|\nabla u_{N}^{k}\right\|^{2} \leq\left\|\nabla u_{N}^{k-1}\right\|^{2}+C_{7} \tau \tag{3.5}
\end{equation*}
$$

Multiplying (3.5) by $\left(1+\frac{\gamma}{2 C_{1}^{2}} \tau\right)^{k-1}$ and summing then for k from 1 to n, we have

$$
\begin{align*}
\left\|\nabla u_{N}^{k}\right\|^{2} & \leq \frac{1}{\left(1+\frac{\gamma}{2 C_{1}^{2}} \tau\right)^{n}}\left\|\nabla u_{0}\right\|^{2}+\frac{2 C_{1}^{2} C_{7}}{\gamma} \tag{3.6}\\
& \leq\left\|\nabla u_{0}\right\|^{2}+\frac{2 C_{1}^{2} C_{7}}{\gamma} \triangleq \Upsilon_{1}^{2}
\end{align*}
$$

It then follows from (3.2) that

$$
\begin{equation*}
\left(\frac{\gamma}{2 C_{1}}-2 c_{0}\right) \tau \sum_{k_{0}+1}^{k_{0}+N_{0}}\left\|\nabla u_{N}^{k}\right\|^{2} \leq\left\|u_{N}^{k_{0}}\right\|^{2} \tag{3.7}
\end{equation*}
$$

By applying the discrete uniform Gronwall's inequality, we deduce that

$$
\begin{aligned}
\left\|\nabla u_{N}^{k}\right\|^{2} & \leq\left(\frac{\tau}{r} \sum_{k_{0}+1}^{k_{0}+N_{0}}\left\|\nabla u_{N}^{k}\right\|^{2}+\tau \sum_{k_{0}+1}^{k_{0}+N_{0}} C_{7}\right) e^{-\tau \sum_{k_{0}+1}^{k_{0}+N_{0}} \frac{\gamma}{2 C_{1}^{2}}} \\
& \leq \varrho_{1}^{2}, \quad \forall n \geq n_{1}=n_{0}+N_{0}
\end{aligned}
$$

Taking the sum of (3.4), we complete the proof of Lemma 3.3.
Corollary 3.4. Under the hypotheses of Lemma 3.3, we have

$$
\begin{aligned}
& \left\|u_{N}^{n}\right\|_{q} \leq C\left(\varrho_{0}, \varrho_{1}\right), \quad \forall n \geq n_{1}, \quad 0<q<\infty \\
& \left\|u_{N}^{n}\right\|_{q} \leq C\left(\Upsilon_{0}, \Upsilon_{1}\right), \quad \forall n \geq 1,0<q<\infty
\end{aligned}
$$

Lemma 3.5. In addition to the conditions of Lemma 2.4, we suppose that $u_{0} \in H_{p}^{2}(\Omega)$ satisfying $\left\|\Delta u_{0}\right\|^{2} \leq R^{2}$. Then we have

$$
\begin{gathered}
\left\|\Delta u_{N}^{n}(x, t)\right\|^{2} \leq \varrho_{2}^{2}, \quad \forall n \geq n_{2}=n_{1}+N_{0} \\
\left\|\Delta u_{N}^{n}\right\|^{2} \leq \Upsilon_{2}^{2}, \quad \forall n \geq 1 \\
\tau^{2} \sum_{k=1}^{n}\left\|\bar{\partial}_{t} \Delta u_{N}^{k}\right\|^{2}+\tau \sum_{k=1}^{n}\left\|\nabla \Delta u_{N}^{k}\right\|^{2} \leq C_{3}^{\prime}\left(1+t_{n}\right), \quad \forall n \geq 1
\end{gathered}
$$

where n_{1} is given by Lemma 3.3, N_{0} is an arbitrary positive integer, r is an arbitrary positive number such that $N_{0} \tau=r$, the constant ϱ_{2} is independent of N, n, τ, and $\left\|u_{0}\right\|_{H^{2}}$, the two constants $\Upsilon_{2}=\Upsilon_{2}\left(\left\|u_{0}\right\|_{H^{2}}\right)$ and $C_{3}^{\prime}=C_{2}^{\prime}\left(\left\|u_{0}\right\|_{H^{2}}\right)$ are independent of N, n and τ.

Proof. Setting $v=\Delta^{2} u_{N}^{k}$ in (3.1), we derive that

$$
\begin{align*}
& \frac{1}{2} \bar{\partial}_{t}\left\|\Delta u_{N}^{k}\right\|^{2}+\frac{\tau}{2}\left\|\bar{\partial}_{t} \Delta u_{N}^{k}\right\|^{2}+\gamma\left\|\Delta^{2} u_{N}^{k}\right\|^{2} \tag{3.8}\\
= & \left(\Delta \varphi\left(u_{N}^{k}\right), \Delta^{2} u_{N}^{k}\right)+\left(\beta \cdot \nabla \psi\left(u_{N}^{k}\right), \Delta^{2} u_{N}^{k}\right) .
\end{align*}
$$

When $\mathbf{k} \geq \mathbf{n}_{\mathbf{1}}$, similar to the proof of Lemma 2.2, use Sobolev's interpolation inequality. Simple calculations show that

$$
\begin{align*}
\left(\beta \cdot \nabla \psi\left(u_{N}^{k}\right), \Delta^{2} u_{N}^{k}\right) & \leq \frac{\gamma}{8}\left\|\Delta^{2} u_{N}^{k}\right\|^{2}+\frac{|\beta|^{2}}{\gamma}\left\|\psi^{\prime}\left(u_{N}^{k}\right) \nabla u_{N}^{k}\right\|^{2} \tag{3.9}\\
& \leq \frac{\gamma}{8}\left\|\Delta^{2} u_{N}^{k}\right\|^{2}+C\left\|u_{N}^{k}\right\|_{12}^{6}\left\|\nabla u_{N}^{k}\right\|_{4}^{2} \\
& \leq \frac{\gamma}{4}\left\|\Delta^{2} u_{N}^{k}\right\|^{2}+C\left(\varrho_{0}, \varrho_{1}\right)
\end{align*}
$$

and
(3.10)

$$
\begin{aligned}
& \left(\Delta \varphi\left(u_{N}^{k}\right), \Delta^{2} u_{N}^{k}\right) \\
\leq & \frac{\gamma}{8}\left\|\Delta^{2} u_{N}^{k}\right\|^{2}+\frac{2}{\gamma}\left\|\varphi^{\prime}\left(u_{N}^{k}\right) \Delta u_{N}^{k}\right\|^{2}+\frac{2}{\gamma}\left\|\varphi^{\prime \prime}\left(u_{N}^{k}\right)\left|\nabla u_{N}^{k}\right|^{2}\right\|^{2} \\
\leq & \frac{\gamma}{8}\left\|\Delta^{2} u_{N}^{k}\right\|^{2}+C\left(\left\|u_{N}^{k}\right\|_{8}^{4}\left\|\Delta u_{N}^{k}\right\|_{4}^{2}+\left\|u_{N}^{k}\right\|_{4}^{2}\left\|\nabla u_{N}^{k}\right\|_{8}^{4}+\left\|\nabla u_{N}^{k}\right\|_{12}^{6}\left\|\nabla u_{N}^{k}\right\|_{4}^{2}\right) \\
\leq & \frac{\gamma}{8}\left\|\Delta^{2} u_{N}^{k}\right\|^{2}+C\left(\left\|\Delta u_{N}^{k}\right\|_{4}^{2}+\left\|\nabla u_{N}^{k}\right\|_{8}^{4}+\left\|\nabla u_{N}^{k}\right\|_{4}^{2}\right) \\
\leq & \frac{\gamma}{4}\left\|\Delta^{2} u_{N}^{k}\right\|^{2}+C\left(\varrho_{0}, \varrho_{1}\right) .
\end{aligned}
$$

It then follows from (3.8)-(3.10) that

$$
\bar{\partial}_{t}\left\|\Delta u_{N}^{k}\right\|^{2}+\tau\left\|\bar{\partial}_{t} \Delta u_{N}^{k}\right\|^{2}+\gamma\left\|\Delta^{2} u_{N}\right\|^{2} \leq C\left(\varrho_{0}, \varrho_{1}\right) .
$$

Hence

$$
\begin{equation*}
\bar{\partial}_{t}\left\|\Delta u_{N}^{k}\right\|^{2}+\tau\left\|\bar{\partial}_{t} \Delta u_{N}^{k}\right\|^{2}+C_{11}\left(\left\|\Delta u_{N}^{k}\right\|^{2}+\left\|\nabla \Delta u_{N}^{k}\right\|^{2}\right) \leq C\left(\varrho_{0}, \varrho_{1}\right) . \tag{3.11}
\end{equation*}
$$

By (3.4), we obtain

$$
\begin{equation*}
\left(\frac{\gamma}{2 C_{1}}-2 c_{0}\right) \tau \sum_{k_{0}+1}^{k_{0}+N_{0}}\left\|\Delta u_{N}^{k}\right\|^{2} \leq\left\|\nabla u_{N}^{k_{0}}\right\|^{2}+C_{7} r \tag{3.12}
\end{equation*}
$$

By applying the discrete uniform Gronwall's inequality, we deduce that

$$
\begin{align*}
\left\|\Delta u_{N}^{k}\right\|^{2} & \leq\left(\frac{\tau}{r} \sum_{k_{0}+1}^{k_{0}+N_{0}}\left\|\Delta u_{N}^{k}\right\|^{2}+\tau \sum_{k_{0}+1}^{k_{0}+N_{0}} C\left(\varrho_{0}+\varrho_{1}\right)\right) e^{-\tau \sum_{k_{0}+1}^{k_{0}+N_{0}} C_{11}} \tag{3.13}\\
& \leq \varrho_{2}^{2}, \quad \forall n \geq n_{2}=n_{1}+N_{0}
\end{align*}
$$

For $\mathbf{k} \geq \mathbf{1}$, as the proof of inequality (3.11), we have
(3.14) $\bar{\partial}_{t}\left\|\Delta u_{N}^{k}\right\|^{2}+\tau\left\|\bar{\partial}_{t} \Delta u_{N}^{k}\right\|^{2}+C_{11}\left(\left\|\Delta u_{N}^{k}\right\|^{2}+\left\|\nabla \Delta u_{N}^{k}\right\|^{2}\right) \leq C\left(\Upsilon_{0}, \Upsilon_{1}\right)$.

Taking the sum of (3.14) for k from 1 to n, we obtain

$$
\begin{equation*}
\left\|\Delta u_{N}^{k}\right\|^{2}+\tau^{2} \sum_{k=1}^{n}\left\|\bar{\partial}_{t} \Delta u_{N}^{k}\right\|^{2}+C_{11} \tau \sum_{k=1}^{n}\left\|\nabla \Delta u_{N}^{k}\right\|^{2} \leq C_{3}^{\prime}\left(1+t_{n}\right), \quad \forall n \geq 1 \tag{3.15}
\end{equation*}
$$

Combining (3.13) and (3.15), the proof of this lemma is completed.
Corollary 3.6. Under the hypotheses of Lemma 3.3, we have

$$
\begin{aligned}
\left\|u_{N}^{n}\right\|_{\infty} \leq C\left(\varrho_{0}, \varrho_{1}\right), \quad \forall n \geq n_{2} \\
\left\|u_{N}^{n}\right\|_{\infty} \leq C\left(\Upsilon_{0}, \Upsilon_{1}\right), \quad \forall n \geq 1
\end{aligned}
$$

Theorem 3.7. Suppose that γ is sufficiently large, $u_{0} \in H_{p}^{2}(\Omega), \varphi \in C^{2}$ and $\psi \in C^{1}$ are also satisfy

$$
\varphi^{\prime}(r)>0, \quad \varphi^{(i)}(r) \leq c|r|^{k-i}+c^{\prime}, \quad \psi^{\prime}(r) \leq c r^{2} \sqrt{\varphi^{\prime}(r)}+c^{\prime}
$$

where $k \leq 3$ is a positive constant and $i=0,1,2$. Then the semigroup of operator $\left\{S_{N}^{\tau}(n)\right\}_{n \geq 0}$ generated by problem (3.1) has a compact global attractor $\mathcal{A}_{N}^{\tau} \subset H_{p}^{2}(\Omega) \bigcap S_{N}$.

Proof. Set $H=H_{p}^{2}(\Omega) \bigcap S_{N}, S_{N}^{\tau}$ is a semigroup operator, i.e., the solution operator generated by problem (3.1).
(I) By using the results of Lemma 3.1, Lemma 3.3, Lemma 3.5, and assuming that $u_{N}^{0} \in \mathcal{B}=\left\{u_{N}^{0} \mid\left\|u_{N}^{0}\right\|_{H^{2}} \leq R_{0}\right\} \subset H_{p}^{2}(\Omega) \bigcap S_{N}$, we have

$$
\left\|S_{N}^{\tau}(n) u_{N}^{0}\right\|_{H^{2}}=\left\|u_{N}^{n}\right\|_{H^{2}} \leq\left(\varrho_{0}^{2}+\varrho_{1}^{2}+\varrho_{2}^{2}\right)^{\frac{1}{2}}, \quad \forall n \geq n_{1}(R)
$$

Therefore

$$
\mathcal{B}_{0}=\left\{u_{N}^{n} \in H_{p}^{2}(\Omega) \bigcap S_{N} \left\lvert\,\left\|u_{N}^{n}\right\|_{H^{2}} \leq\left(\varrho_{0}^{2}+\varrho_{1}^{2}+\varrho_{2}^{2}\right)^{\frac{1}{2}}\right.\right\}
$$

is a bounded absorbing set of the semigroup of operator $\left\{S_{N}^{\tau}(n)\right\}_{n \geq 0}$.
(II) From Lemma 3.1, Lemma 3.3, Lemma 3.5 and their corollaries, we have

$$
\left\|S_{N}^{\tau}(n) u_{N}^{0}\right\|_{H^{2}} \leq\left(\Upsilon_{0}^{2}+\Upsilon_{1}^{2}+\Upsilon_{2}^{2}\right)^{\frac{1}{2}}, \quad \forall n \geq 0
$$

This means that $\left\{S_{N}^{\tau}(n)\right\}$ is uniformly bounded in $H_{p}^{2}(\Omega) \bigcap S_{N}$. Since a closed bounded set is a compact set in the finite dimensional space $H_{p}^{2}(\Omega) \bigcap S_{N}$, the operator $S_{N}^{\tau}(n)$ is uniformly compact for any $n \geq 0$.

On the other hand, it is easy to see that the continuity of operator $S_{N}^{\tau}(n)$ is from its boundness. Hence, the proof is completed.

3.2. Convergence of the global attractors \mathcal{A}_{N}^{τ}

Let $G_{N}: L_{p}^{2}(\Omega) \rightarrow S_{N}$ be the integral projection operator, i.e., for any given $u \in L^{2}(\Omega)$, we have

$$
\begin{equation*}
\left(\nabla\left(G_{N} u\right), \nabla v\right)=(u, v), \quad \forall v \in S_{N} \tag{3.16}
\end{equation*}
$$

Then for any $u, v \in L^{2}(\Omega)$, we have $\left(G_{N} u, v\right)=\left(u, G_{N} v\right)$.

Lemma 3.8. For the integral projection operator G_{N}, the following results hold:
(1) $\left\|\Delta\left(G_{N} u\right)\right\|=\left\|P_{N} u\right\|, \quad \forall u \in L_{p}^{2}(\Omega)$;
(2) $\left\|G_{N}(\nabla u)\right\|=\left\|\nabla\left(G_{N} u\right)\right\|, \quad \forall u \in H_{p}^{1}(\Omega)$;
(3) $\left\|G_{N}(\Delta u)\right\|=\left\|\nabla\left[G_{N}(\nabla u)\right]\right\|=\left\|\Delta\left(G_{N} u\right)\right\|, \quad \forall u \in H_{p}^{2}(\Omega)$;
(4) $\left\|G_{N}^{2}(\Delta u)\right\|=\left\|\nabla\left[G_{N}^{2}(\nabla u)\right]\right\|=\left\|\Delta\left(G_{N}^{2} u\right)\right\|, \quad \forall u \in H_{p}^{2}(\Omega)$.

Similar to Lemma 3.5, the following result can be proved easily.
Lemma 3.9. Under the hypotheses of Lemma 3.5, we have the estimates for the smooth solution $u(x, t)$ of problem (1.1)-(1.3) :

$$
\begin{aligned}
& \int_{0}^{t}\left\|\nabla u_{t}\right\|^{2} d s \leq C(1+t) \\
& t\left\|u_{t}\right\|^{2}+\int_{0}^{t} s\left\|\Delta u_{t}\right\|^{2} d s \leq C\left(1+t^{2}\right) \\
& t^{2}\left\|\nabla u_{t}\right\|^{2}+\int_{0}^{t} s^{2}\left\|\nabla \Delta u_{t}\right\|^{2} d s \leq C\left(1+t^{3}\right) \\
& t^{3}\left\|\Delta u_{t}\right\|^{2}+\int_{0}^{t} s^{3}\left(\left\|u_{t t}\right\|^{2}+\left\|\Delta^{2} u_{t}\right\|^{2}\right) d s \leq C\left(1+t^{4}\right) \\
& t^{4}\left\|\nabla \Delta u_{t}\right\|^{2}+\int_{0}^{t} s^{4}\left\|\nabla u_{t t}\right\|^{2} d s \leq C\left(1+t^{5}\right)
\end{aligned}
$$

where the constant C is independent of t.
Theorem 3.10. Suppose that the conditions of Theorem 3.7 hold. Then

$$
d\left(\mathcal{A}_{N}^{\tau}, \mathcal{A}\right) \rightarrow 0 \quad \text { as } \tau \rightarrow 0, N \rightarrow+\infty
$$

Proof. Let $\left\|u_{0}\right\|_{H^{2}} \leq R_{0}$. On account of Theorem 2.7, this theorem will be proved by taking the error estimates of the solution u_{N}^{n} of discrete problem (3.1). Now, we accomplish them through two steps.

Step 1. Take the error estimates of the solution v^{n} of the linear scheme as follows:

$$
\begin{align*}
& \left(\bar{\partial}_{t} v_{N}^{k}+\gamma \Delta^{2} v_{N}^{k}-\gamma \Delta v_{N}^{k}-\Delta \varphi\left(u_{N}^{k}\right)-\beta \cdot \nabla \psi\left(u_{N}^{k}\right), \zeta\right)=\left(-\gamma \Delta u_{N}^{k}, \zeta\right) \tag{3.17}\\
& v_{N}^{0}=P_{N} u_{0}, \quad \forall \zeta \in S_{N}
\end{align*}
$$

Set $u^{k}-v_{N}^{k}=u^{k}=P_{N} u^{k}+P_{N} u^{k}-v_{N}^{k}=\rho^{k}+\theta^{k}$. Hence, θ^{k} satisfies

$$
\begin{align*}
& \left(\bar{\partial}_{t} \theta^{k}+\gamma \Delta^{2} \theta^{k}-\gamma \Delta \theta^{k}-\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}\right), \zeta\right)=0, \quad \forall \zeta \in S_{N}, \\
& \theta^{0}=0 \tag{3.18}
\end{align*}
$$

Letting $\zeta=\theta^{k}$ in (3.18), we derive that

$$
\frac{1}{2} \bar{\partial}_{t}\left\|\theta^{k}\right\|^{2}+\frac{\tau}{2}\left\|\bar{\partial}_{t} \theta^{k}\right\|^{2}+\gamma\left(\left\|\Delta \theta^{k}\right\|^{2}+\left\|\nabla \theta^{k}\right\|^{2}\right)=\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}, \theta^{k}\right)
$$

From the definition of G_{N}, we find that

$$
\left.\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}, \theta^{k}\right)=\left(\nabla\left[G_{N}\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}\right)\right], \nabla \theta^{k}\right) \leq \frac{\gamma}{2}\left\|\nabla \theta^{k}\right\|^{2}+\frac{2}{\gamma} \| \nabla\left[\bar{\partial}_{t} u^{k}-u_{t}^{k}\right)\right] \|
$$

Noticing that

$$
\begin{aligned}
\left.\| \nabla\left[\bar{\partial}_{t} u^{k}-u_{t}^{k}\right)\right] \|^{2} & =\frac{1}{\tau^{2}}\left\|\int_{t_{k-1}}^{t_{k}}\left(s-t_{k-1}\right) \nabla G_{N} u_{t t} d s\right\|^{2} \\
& \leq \frac{1}{\tau^{2}} \int_{t_{k-1}}^{t_{k}} \frac{\left(s-t_{k-1}^{2}\right.}{s^{2}} d s \int_{t_{k-1}}^{t_{k}} s^{2}\left\|\nabla G_{N} u_{t t}\right\|^{2} d s \\
& \leq \frac{\tau}{t_{k}^{2}} \int_{t_{k-1}}^{t_{k}} s^{2}\left\|\nabla G_{N} u_{t t}\right\|^{2} d s
\end{aligned}
$$

Therefore, we deduce that
(3.19) $\bar{\partial}_{t}\left\|\theta^{k}\right\|^{2}+\tau\left\|\bar{\partial}_{t} \theta^{k}\right\|^{2}+2 \gamma\left\|\Delta \theta^{k}\right\|^{2}+\gamma\left\|\nabla \theta^{k}\right\|^{2} \leq \frac{4 \tau}{\gamma t_{k}^{2}} \int_{t_{k-1}}^{t_{k}} s^{2}\left\|\nabla G_{N} u_{t t}\right\|^{2} d s$.

Multiplying (3.19) by t_{k}^{2}, taking the sum for k from 1 to n, using $\left\|\nabla G_{N} u_{t t}\right\| \leq$ $C\left\|\nabla \Delta u_{t}\right\|$, we get

$$
\begin{align*}
& t_{n}^{2}\left\|\theta^{n}\right\|^{2}+\tau^{2} \sum_{k=1}^{n} t_{k}^{2}\left\|\bar{\partial}_{t} \theta^{k}\right\|^{2}+\gamma \tau \sum_{k=1}^{n} t_{k}^{2}\left(2\left\|\Delta \theta^{k}\right\|^{2}+\left\|\nabla \theta^{k}\right\|^{2}\right) \tag{3.20}\\
\leq & 3 \tau \sum_{k=1}^{n} t_{k}\left\|\theta^{k}\right\|^{2}+\frac{4 \tau^{2}}{\gamma} \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} s^{2}\left\|\nabla G_{N} u_{t t}\right\|^{2} d s \\
\leq & 3 \tau \sum_{k=1}^{n} t_{k}\left\|\theta^{k}\right\|^{2}+C \tau^{2} \int_{0}^{t_{n}} s^{2}\left\|\nabla \Delta u_{t}\right\|^{2} d s \\
\leq & 3 \tau \sum_{k=1}^{n} t_{k}\left\|\theta^{k}\right\|^{2}+C \tau^{2}\left(1+t_{n}^{3}\right)
\end{align*}
$$

Now, we estimate $\tau \sum_{k=1}^{n} t_{k}\left\|\theta^{k}\right\|^{2}$ in (3.20). Set $\zeta=G_{N} \theta^{k}$ in (3.18), we have

$$
\left(\bar{\partial}_{t} \theta^{k}+\gamma \Delta^{2} \theta^{k}-\gamma \Delta \theta^{k}-\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}\right), G_{N} \theta^{k}\right)=0
$$

Noticing that

$$
\begin{aligned}
& \left(\bar{\partial}_{t} \theta^{k}, G_{N} \theta^{k}\right)=\frac{1}{2} \bar{\partial}_{t}\left\|\nabla G_{N} \theta^{k}\right\|^{2} \\
& \left(\gamma \Delta^{2} \theta^{k}-\gamma \Delta \theta^{k}, G_{N} \theta^{k}\right)=\gamma\left\|\nabla \theta^{k}\right\|^{2}+\gamma\left\|\theta^{k}\right\|^{2} \\
& \left(\bar{\partial}_{t} u^{k}-u_{t}^{k}, G_{N} \theta^{k}\right) \leq \frac{\gamma}{2}\left\|\theta^{k}\right\|^{2}+\frac{1}{2 \gamma}\left\|G_{N}\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}\right)\right\|^{2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\bar{\partial}_{t}\left\|\nabla G_{N} \theta^{k}\right\|^{2}+\gamma\left(2\left\|\nabla \theta^{k}\right\|^{2}+\left\|\theta^{k}\right\|^{2}\right) \leq \frac{1}{\gamma}\left\|G_{N}\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}\right)\right\|^{2} . \tag{3.21}
\end{equation*}
$$

Multiplying (3.21) by τt_{k}, taking the sum for k from 1 to n, using $\left\|G_{N} u_{t t}\right\| \leq$ $C\left\|\Delta u_{t}\right\|$, we get

$$
\begin{align*}
& t_{n}\left\|\nabla G_{N} \theta^{n}\right\|^{2}+\gamma \tau \sum_{k=1}^{n} t_{k}\left(2\left\|\nabla \theta^{k}\right\|^{2}+\left\|\theta^{k}\right\|^{2}\right) \tag{3.22}\\
\leq & \frac{\tau}{\gamma} \sum_{k=1}^{n} t_{k}\left\|G_{N}\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}\right)\right\|^{2}+\tau \sum_{k=1}^{n}\left\|\nabla G_{N} \theta^{k}\right\|^{2} \\
\leq & \frac{\tau^{2}}{\gamma} \int_{0}^{t_{n}} s\left\|G_{N} u_{t t}\right\|^{2} d s+\tau \sum_{k=1}^{n}\left\|\nabla G_{N} \theta^{k}\right\|^{2} \\
\leq & C \tau^{2}\left(1+t_{n}^{2}\right)+\tau \sum_{k=1}^{n}\left\|\nabla G_{N} \theta^{k}\right\|^{2} .
\end{align*}
$$

To estimate $\tau \sum_{k=1}^{n}\left\|\nabla G_{N} \theta^{k}\right\|^{2}$ in (3.22), set $\zeta=G_{N}^{2} \theta^{k}$ in (3.18). Therefore

$$
\left(\bar{\partial}_{t} \theta^{k}+\gamma \Delta^{2} \theta^{k}-\gamma \Delta \theta^{k}-\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}\right), G_{N}^{2} \theta^{k}\right)=0
$$

Noticing that

$$
\begin{aligned}
& \left(\bar{\partial}_{t} \theta^{k}, G_{N}^{2} \theta^{k}\right)=\frac{1}{2} \bar{\partial}_{t}\left\|G_{N} \theta^{k}\right\|^{2}+\frac{\tau}{2}\left\|\nabla G_{N} \theta^{k}\right\|^{2} \\
& \left(\gamma \Delta^{2} \theta^{k}-\gamma \Delta^{k}, G_{N}^{2} \theta^{k}\right)=\gamma\left\|\theta^{k}\right\|^{2}+\gamma\left\|\nabla G_{N} \theta^{k}\right\|^{2} \\
& \left(\bar{\partial}_{t} u^{k}-u_{t}^{k}, G_{N}^{2} \theta^{k}\right) \leq \frac{\gamma}{2}\left\|\nabla G_{N} \theta^{k}\right\|^{2}+\frac{1}{2 \gamma}\left\|\nabla G_{N}^{2}\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}\right)\right\|^{2} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\bar{\partial}_{t}\left\|G_{N} \theta^{k}\right\|^{2}+\gamma\left(2\left\|\theta^{k}\right\|^{2}+\left\|\nabla G_{N} \theta^{k}\right\|^{2}\right) \leq \frac{1}{\gamma}\left\|\nabla G_{N}^{2}\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}\right)\right\|^{2} \tag{3.23}
\end{equation*}
$$

Taking the sum of (3.23) for k from 1 to n, applying $\left\|\nabla G_{N}^{2} u_{t t}\right\| \leq C\left\|\nabla u_{t}\right\|$, we obtain

$$
\begin{align*}
& \left\|G_{N} \theta^{k}\right\|^{2}+\gamma \tau \sum_{k=1}^{n}\left(2\left\|\theta^{k}\right\|^{2}+\left\|\nabla G_{N} \theta^{k}\right\|^{2}\right) \tag{3.24}\\
\leq & \frac{\tau}{\gamma} \sum_{k=1}^{n}\left\|\nabla G_{N}^{2}\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}\right)\right\|^{2} \leq \frac{\tau^{2}}{\gamma} \int_{0}^{t_{n}}\left\|\nabla G_{N}^{2}\left(\bar{\partial}_{t} u^{k}-u_{t}^{k}\right)\right\|^{2} d s \\
\leq & C \tau^{2}\left(1+t_{n}\right) .
\end{align*}
$$

Adding (3.20), (3.22) and (3.24) together gives

$$
\begin{align*}
& \quad t_{n}^{2}\left\|\theta^{k}\right\|^{2}+\tau^{2} \sum_{k=1}^{n} t_{k}^{2}\left\|\bar{\partial}_{t} \theta^{k}\right\|^{2}+\gamma \tau \sum_{k=1}^{n} t_{k}^{2}\left(2\left\|\Delta \theta^{k}\right\|^{2}+\left\|\nabla \theta^{k}\right\|^{2}\right) \tag{3.25}\\
& \quad+\gamma \tau \sum_{k=1}^{n} t_{k}\left(2\left\|\nabla \theta^{k}\right\|^{2}+\left\|\theta^{k}\right\|^{2}\right)+\gamma \tau \sum_{k=1}^{n}\left(2\left\|\theta^{k}\right\|^{2}+\left\|\nabla G_{N} \theta^{k}\right\|^{2}\right) \\
& \leq C \tau^{2}\left(1+t_{n}^{3}\right)
\end{align*}
$$

Setting $\zeta=\Delta \theta^{k}$ in (3.18), we derive that

$$
\bar{\partial}_{t}\left\|\nabla \theta^{k}\right\|^{2}+2 \gamma\left\|\nabla \Delta \theta^{k}\right\|^{2}+\gamma\left\|\Delta \theta^{k}\right\|^{2} \leq \frac{1}{\gamma}\left\|\bar{\partial}_{t} u^{k}-u_{t}^{k}\right\|^{2}
$$

Multiply above inequality by τt_{k}^{3}, take the sum for k from 1 to n. Simple calculations show

$$
\begin{equation*}
t_{n}^{3}\left\|\nabla \theta^{n}\right\|^{2} \leq C \tau^{2}\left(1+t_{n}^{4}\right) \tag{3.26}
\end{equation*}
$$

Setting $\zeta=\Delta^{2} \theta^{k}$ in (3.18), we derive that

$$
\bar{\partial}_{t}\left\|\Delta \theta^{k}\right\|^{2}+2 \gamma\left\|\Delta^{2} \theta^{k}\right\|^{2}+\gamma\left\|\nabla \Delta \theta^{k}\right\|^{2} \leq \frac{1}{\gamma}\left\|\nabla\left[\bar{\partial}_{t} u^{k}-u_{t}^{k}\right]\right\|^{2}
$$

Multiply above inequality by τt_{k}^{4}, take the sum for k from 1 to n. Simple calculations show

$$
\begin{equation*}
t_{n}^{4}\left\|\nabla \theta^{n}\right\|^{2} \leq C \tau^{2}\left(1+t_{n}^{5}\right) \tag{3.27}
\end{equation*}
$$

Step 2. Take the error estimates of solution u_{N}^{n} of problem (3.1). Set $v_{N}^{k}-u_{N}^{k}=e^{k}$. Thus, e^{k} satisfies

$$
\begin{aligned}
& \left(\bar{\partial}_{t} e^{k}+\gamma \Delta e^{k}+\gamma \Delta \theta^{k}-\Delta\left(\varphi\left(u^{k}\right)-\varphi\left(u_{N}^{k}\right)\right)-\beta \cdot \nabla\left(\psi\left(u^{k}\right)-\psi\left(u_{N}^{k}\right)\right), \zeta\right)=0 \\
& \forall \zeta \in S_{N}, k=1,2, \ldots \\
& e^{0}=0
\end{aligned}
$$

Setting $\zeta=e^{k}$ in (3.28), we get

$$
\begin{aligned}
& \frac{1}{2} \bar{\partial}_{t}\left\|e^{k}\right\|^{2}+\frac{\tau}{2}\left\|\bar{\partial}_{t} e^{k}\right\|^{2}+\gamma\left\|\Delta e^{k}\right\|^{2} \\
= & \left(\Delta\left(\varphi\left(u^{k}\right)-\varphi\left(u_{N}^{k}\right)\right)+\beta \cdot \nabla\left(\psi\left(u^{k}\right)-\psi\left(u_{N}^{k}\right)\right), e^{k}\right)-\gamma\left(\Delta \theta^{k}, e^{k}\right) \\
\leq & \left\|\varphi^{\prime}\left(\lambda_{1} u^{k}+\left(1-\lambda_{1}\right) u_{N}^{k}\right)\right\|_{\infty}\left\|u^{k}-u_{N}^{k}\right\|\left\|\Delta e^{k}\right\| \\
& +|\beta|\left\|\psi^{\prime}\left(\lambda_{2} u^{k}+\left(1-\lambda_{2}\right) u_{N}^{k}\right)\right\|_{\infty}\left\|u^{k}-u_{N}^{k}\right\|\left\|\nabla e^{k}\right\|+\gamma\left\|\theta^{k}\right\|\left\|\Delta e^{k}\right\| \\
\leq & C\left\|u^{k}-u_{N}^{k}\right\|\left\|\Delta e^{k}\right\|+C\left\|u^{k}-u_{N}^{k}\right\|\left\|\nabla e^{k}\right\|+\gamma\left\|\theta^{k}\right\|\left\|\Delta e^{k}\right\| \\
\leq & \frac{\gamma}{2}\left\|\Delta e^{k}\right\|^{2}+C\left(\left\|\rho^{k}\right\|^{2}+\left\|\theta^{k}\right\|^{2}+\left\|e^{k}\right\|^{2}\right),
\end{aligned}
$$

where $\lambda \in(0,1)$. Hence

$$
\bar{\partial}_{t}\left\|e^{k}\right\|^{2}+\tau\left\|\bar{\partial}_{t} e^{k}\right\|^{2}+\gamma\left\|\Delta e^{k}\right\|^{2} \leq C\left(\left\|\rho^{k}\right\|^{2}+\left\|\theta^{k}\right\|^{2}+\left\|e^{k}\right\|^{2}\right)
$$

Using discrete Gronwall's inequality, we obtain

$$
\begin{equation*}
\left\|e^{n}\right\|^{2}+\gamma \tau\left\|\Delta e^{k}\right\|^{2} \leq C \tau \sum_{k=1}^{n}\left(\rho^{k}\left\|^{2}+\right\| \theta^{k} \|^{2}\right) \leq C\left(N^{-4}+\tau^{2}\right) \tag{3.29}
\end{equation*}
$$

Setting $\zeta=\Delta e^{k}$ in (3.28), using Sobolev's interpolation inequality, we immediately obtain

$$
\bar{\partial}_{t}\left\|\nabla e^{k}\right\|^{2}+\gamma\left\|\nabla \Delta e^{k}\right\|^{2} \leq C\left(\left\|\nabla \rho^{k}\right\|^{2}+\left\|\nabla \theta^{k}\right\|^{2}+\left\|e^{k}\right\|^{2}\right)
$$

Multiplying above inequality by τt_{k}^{2}, taking the sum for k from 1 to n, using (3.29) and (3.25), we get

$$
\begin{align*}
& t_{n}^{2}\left\|\nabla e^{n}\right\|^{2}+\gamma \tau \sum_{k=1}^{n}\left\|\nabla \Delta e^{k}\right\|^{2} \tag{3.30}\\
\leq & C\left(N^{-2}+\tau^{2}+\tau \sum_{k=1}^{n}\left(\left\|\nabla e^{k}\right\|^{2}+t_{k}^{2}\left\|\nabla \theta^{k}\right\|^{2}\right) \leq C\left(N^{-2}+\tau^{2}\right)\right.
\end{align*}
$$

Setting $\zeta=\Delta^{2} e^{k}$ in (3.28), using Sobolev's interpolation inequality, we immediately obtain

$$
\begin{aligned}
\bar{\partial}_{t}\left\|\Delta e^{k}\right\|^{2}+\gamma\left\|\Delta^{2} e^{k}\right\|^{2} & \leq C\left(\left\|\Delta \rho^{k}\right\|^{2}+\left\|\Delta \theta^{k}\right\|^{2}+\left\|e^{k}\right\|^{2}\right) \\
& \leq C\left(N^{-2}\|\nabla \Delta u\|^{2}+\left\|\Delta \theta^{k}\right\|^{2}+\left\|e^{k}\right\|^{2}\right)
\end{aligned}
$$

Multiplying above inequality by τt_{k}^{2}, taking the sum for k from 1 to n, using (3.29) and (3.25), we get

$$
\begin{align*}
& t_{n}^{2}\left\|\Delta e^{n}\right\|^{2}+\gamma \tau \sum_{k=1}^{n}\left\|\Delta^{2} e^{k}\right\|^{2} \tag{3.31}\\
\leq & C\left(N^{-2}+\tau^{2}+\tau \sum_{k=1}^{n} t_{k}^{2}\left\|\nabla \theta^{k}\right\|^{2}\right) \leq C\left(N^{-2}+\tau^{2}\right)
\end{align*}
$$

By using the triangle inequality, we have
$\left\|u^{n}-u_{N}^{n}\right\|_{H^{2}}^{2} \leq 2\left(\left\|\rho^{n}\right\|_{H^{2}}^{2}+\left\|\theta^{n}\right\|_{H^{2}}^{2}+\left\|e^{n}\right\|_{H^{2}}^{2}\right) \leq C\left(N^{-2}+\tau^{2}\right), \quad \forall t \in(0,+\infty)$.
Then, we complete the proof of the theorem.
Acknowledgements. The author would like to thank Dr. Fengnan Liu and the referees for the valuable comments and suggestions about this paper. This work is partly supported by the Natural Science Foundation of China for Young Scholar (No. 11401258) and the natural Science Foundation of Jiangsu Province of China for Young Scholar (No. BK20140130).

References

[1] C. Canuto and A. Qarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp. 38 (1982), no. 157, 67-86.
[2] D. S. Cohen and J. D. Murry, A generalized diffusion model for growth and dispersal in a population, J Math. Biol. 12 (1981), no. 2, 237-249.
[3] A. Eden and V. K. Kalantarov, The convective Cahn-Hilliard equation, Appl. Math. Lett. 20 (2007), no. 4, 455-461.
[4] , 3D convective Cahn-Hilliard equation, Commun. Pure Appl. Anal. 6 (2007), no. 4, 1075-1086.
[5] C. M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation, Math. Comp. 58 (1992), no. 198, 603-630.
[6] C. M. Elliott and S. M. Zheng, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal. 96 (1986), no. 4, 339-357.
[7] J. K. Hale, X. B. Lin, and G. Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. Comp. 50 (1988), no. 181, 89-123.
[8] C. C. Liu, On the convective Cahn-Hilliard equation with degenerate mobility, J. Math. Anal. Appl. 344 (2008), no. 1, 124-144.
[9] S. J. Lü, The spectral method for the long-time behavior of a generalized KdV-Burgers equation, Math. Numer. Sin. 21 (1999), no. 2, 129-138.
[10] S. J. Lü and Q. S. Lu, Fourier spectral approximation to long-time behavior of dissipative generalized Kdv-Burgers equations, SIAM J. Numer. Anal. 44 (2006), no. 2, 561-585.
[11] V. G. Maeja, Sovolev Space, Springer-Verlag, New York, 1985.
[12] A. Novick-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Phy. D. 10 (1984), no. 3, 277-298.
[13] J. Shen, Long-time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal. 38 (1990), no. 4, 201-209.
[14] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, Vol 68, Springer Verlag, New York, 1988.
[15] M. A. Zaks, A. Podolny, A. A. Nepomnyashchy, and A. A. Golovin, Periodic stationary patterns governed by a convective Cahn-Hilliard equation, SIAM J. Appl. Math. 66 (2005), no. 2, 700-720.
[16] F. Y. Zhang, Spectral approximations of attractors of generalized KdV-Burgers equations, Numer. Math. J. Chinese Univ. 21 (1999), no. 1, 32-47.
[17] X. P. Zhao and B. Liu, The existence of global attractor for convective Cahn-Hilliard equation, J. Korean Math. Soc. 49 (2012), no. 2, 357-378.
[18] X. P. Zhao and C. C. Liu, Optimal control of the convective Cahn-Hilliard equation, Appl. Anal. 92 (2013), no. 5, 1028-1045.
[19] , Optimal control for the convective Cahn-Hilliard equation in 2D case, Appl. Math. Optim. 70 (2014), no. 1, 61-82.

School of Science
Jiangnan University
Wuxi 214122, P. R. China
E-mail address: zhaoxiaopeng@sina.cn

[^0]: Received February 24, 2014; Revised June 22, 2014.
 2010 Mathematics Subject Classification. 65M60, 65N35.
 Key words and phrases. spectral methods, convective Cahn-Hilliard equation, global attractor, error estimates.

