DOI QR코드

DOI QR Code

농작업자의 Kresoxim-methyl과 fenthion에 대한 호흡노출량 측정을 위한 IOM 채집기의 효율성 평가

Evaluation for Application of IOM Sampler for Agricultural Farmer's Inhalation Exposure to Kresoxim-methyl and Fenthion

  • 이지호 (서울대학교 농생명공학부) ;
  • 김은혜 (서울대학교 농생명공학부) ;
  • 이종화 (서울대학교 농생명공학부) ;
  • 신용호 (서울대학교 농생명공학부) ;
  • ;
  • 최훈 (원광대학교 식품.환경학부) ;
  • 문준관 (한경대학교 식물생명환경과학과) ;
  • 이혜리 (서울대학교 농생명공학부) ;
  • 김정한 (서울대학교 농생명공학부)
  • Lee, Jiho (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Eunhye (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Jonghwa (Department of Agricultural Biotechnology, Seoul National University) ;
  • Shin, Yongho (Department of Agricultural Biotechnology, Seoul National University) ;
  • Maasfeld, Wolfgang (European Crop Protection Association (ECPA)) ;
  • Choi, Hoon (Division of Food and Environmental Sciences, Wonkwang University) ;
  • Moon, Joon-Kwan (Department of Plant Life and Environmental Sciences, Hankyong National University) ;
  • Lee, Hyeri (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Jeong-Han (Department of Agricultural Biotechnology, Seoul National University)
  • 투고 : 2015.08.21
  • 심사 : 2015.09.17
  • 발행 : 2015.09.30

초록

본 연구는 농작업자의 호흡노출 측정에 사용되어오던 고체흡착제 외에 최근에 사용되는 유리섬유여과지가 장착된 IOM 채집기에 대해서, 고체 제제인 kresoxim-methyl 입상수화제와 액상 제제인 fenthion 유제를 이용하여 포집효율과 파과율을 측정하여 효율성을 검증하고자 하였다. LC-MS/MS 기기상 최소검출량은 12.5 pg, 분석법상 검출한계는 5.0 ng/mL이었고, 각 노출 시료의 matrix matched standard의 직선성은 $R^2$ 값이 0.999 이상이었다. 사용된 유리섬유여과지와 고체흡착제에서의 두 가지 농약의 회수율은 유리섬유여과지는 kresoxim-methyl 102-109%, fenthion 97-104%, XAD-2 resin 고체흡착제는 각각 94-98%, 93-100%이었다. 포집효율은 IOM 채집기(유리섬유여과지 장착)와 고체흡착제(XAD-2 resin)를 연결한 후 개인용 공기펌프에 연결하여 측정하였다. 고체 및 액상 2가지 제제를 표준배율로 희석하여 IOM 채집기에 분무하여 포집효율을 본 결과 두 제제 모두 유리섬유여과지에 포집되었고 고체흡착제로 통과되지 않았다. 파과시험은 IOM 채집기의 유리섬유여과지에 농약 표준 용액을 가하고 고체흡착제를 연결한 후 개인용 공기펌프에 연결하여 측정하였다. 파과시험 결과, kresoxim-methyl은 87-101%, fenthion은 96-105%가 첫번째 유리섬유여과지에 흡착/보유되어 있었고 두 번째 유리섬유여과지나 고체흡착제로 파과되지 않았다. 따라서 유리섬유여과지가 장착된 IOM 채집기는 고체 제제나 액상 제제나 상관없이 포집효율과 흡착/보유 능력이 뛰어난 것으로 검증되어 농약 호흡노출 연구에 적극 활용될 것으로 판단한다.

An IOM sampler equipped with glass fiber filter has been recently utilized instead of solid adsorbent, which was used to measure the inhalation exposure of agricultural operator to pesticides. The aim of this study is to validate the efficacy of an IOM sampler by measuring the trapping efficiency and breakthrough using kresoxim-methyl water-dispersible granule and fenthion emulsifiable concentrate. On LC-MS/ MS, minimum detection level was 12.5 pg and method limit of detection was 5.0 ng/mL. Good linearity ($R^2$ > 0.999) for matrix matched standards was obtained. Recoveries of pesticides from glass fiber filter were 102-109% (kresoxim-methyl) and 97-104% (fenthion) while those from XAD-2 resin were 94-98% (kresoxim methyl) and 93-100% (fenthion). Trapping efficiency test was performed with personal air pumps and IOM sampler (glass fiber filter) connected with solid adsorbent (XAD-2 resin) with two types of formulation (solid and liquid) which were diluted by standard rate and sprayed to IOM sampler. Those pesticides were trapped only in glass fiber filter without any breakthrough to solid adsorbent. After spiking of pesticides to glass fiber filter, breakthrough test was carried out with IOM sampler (glass fiber filter) which was connected with solid adsorbent. As a results, 87-101% of kresoxim-methyl and 96-105% of fenthion remained in spiked glass fiber filter, however, no pesticides were detected in second glass fiber filter and solid adsorbent. In conclusion, IOM sampler which equipped with glass fiber filter can be applied widely for pesticide inhalation exposure study since it has good trapping efficiency and adsorption capacity, regardless of the solid or liquid formulation.

키워드

참고문헌

  1. Abukari, W. (2015) Pesticides applicator exposure assessment: A comparison between modeling and actual measurement. J. Environ. Earth Sci. 5(11):101-115.
  2. ACGIH (1983) Air sampling instruments. 6th edition. American Conference of Governmental Industrial Hygienists. Cincinnati. OH. P. A-7.
  3. An, X., X. Ji, M. Wu, X. Hu, R. Yu, X. Zhao and L. Cai (2014) Risk assessment of applicators to chlorpyrifos through dermal contact and inhalation at different maize plant heights in China. J. Agric. Food Chem. 62:7072-7077. https://doi.org/10.1021/jf501027s
  4. An, X., X. Ji, J. Jiang, Y. Wang, C. Wu and X. Zhao (2015) Potential dermal exposure and risk assessment for applicators of chlorothalonil and chlorpyrifos in cucumber greenhouses in China. Hum. Ecol. Risk Assess. 21(4):972-985. https://doi.org/10.1080/10807039.2014.949165
  5. Behroozy, A. (2013) On dermal exposure assessment. Int. J. Occup. Environ. Med. 4:113-127.
  6. Billings, W. N. and T. F. Bidleman (1983) High volume collection of chlorinated hydrocarbons in urban air using three solid adsorbents. Atmos. Environ. 17(2):383-391. https://doi.org/10.1016/0004-6981(83)90055-0
  7. Byoun, J. Y., H. Choi, J. K. Moon, H. W. Park, K. H. Liu, Y. B. Ihm, B. S. Park and J. H. Kim (2005) Risk assessment of human exposure to methidathion during harvest of cucumber in green House. Toxicol Res. 21:297-301.
  8. Cao, L., B. Chen, L. Zheng, D. Wang, F. Liu and Q. Huang (2015) Assessment of potential dermal and ingalation exposure of workers to the insecticide imidacloprid using whole-body dosimetry in China. J. Environ. Sci. 27:139-146. https://doi.org/10.1016/j.jes.2014.07.018
  9. Capri, E., R. Alberici, C. R. Glass, G. Minuto and M. Trevisan (1999) Potential operator exposure to Procymidone in greenhouses. J. Agric Food Chem. 47(10):4443-4449. https://doi.org/10.1021/jf990175w
  10. Castro Cano, M. L., J. L. Martinez Vidal, F. J. Egea Gonzalez, M. Martinez Galera and M. Cruz Marquez (2000) Gas chromatographic method and whole body dosimetry for assessing dermal exposure of greenhouse applicators to chlorpyrifos-methyl and fenitrothion. Analytica. Chim. Acta. 423:127-36. https://doi.org/10.1016/S0003-2670(00)01084-9
  11. Chester, G. (1993) Evaluation of Agricultural Worker Exposure to, and Absorption of, Pesticides. Ann. Occup. Hyg. 37:509-523. https://doi.org/10.1093/annhyg/37.5.509
  12. Chester, G. (2010) Worker Exposure: Methods and Techniques, In: Hayes' Handbook of Pesticide Toxicology, edited by W.J. Hayes. pp. 1127-1137, Elsevier.
  13. Choi, H., J. K. Moon, K. H. Liu, H. W. Park, Y. B. Ihm, B. S. Park and J. H. Kim (2006) Risk assessment of human exposure to cypermethrin during treatment of mandarin fields. Arch. Environ. Contam. Toxicol. 50(3):437-442. https://doi.org/10.1007/s00244-005-1050-3
  14. Choi, H., J.-K. Moon and J.-H. Kim (2013) Assessment of the exposure of workers to the insecticide imidacloprid during application on various field crops by a hand-held Power Sprayer. J. Agric. Food Chem. 61:10642-10648. https://doi.org/10.1021/jf403169t
  15. Choi, H. and J.-H. Kim (2014) Risk assessment of agricultural worker's exposure to fungicide thiophanate-methyl during treatment in green pepper, cucumber and apple fields. J. Appl. Biol. Chem. 57(1):73-81. https://doi.org/10.3839/jabc.2014.012
  16. Crosby, D. G. (1998) Exposure and risk, in environmental toxicology and chemistry, edited, pp. 185-204, Oxford University Press, Inc.
  17. Culver, D., P. Caplan and G. S. Batchelor (1956) Studies of human exposure during aerosol application of malathion and chlorthion. A.M.A Arch. Ind. Health. 13(1):37-50.
  18. Dalvie, M. A., M. B. Sosan, A. Africa, E. Cairncorss and L. London (2014) Environmental monitoring of pesticide residues from farms at a neighbouring primary and preschool in the Western Cape in South Africa. Sci. Total Environ. 466-467:1078-1084. https://doi.org/10.1016/j.scitotenv.2013.07.099
  19. Farahat, F. M., R. A. Fenske, J. R. Olson, K. Galvin, M. R. Bonner, D. S. Tohlman, T. M. Farahat, P. J. Lein and W. K. Anger (2010) Chlorpyrifos exposures in Egyptian cotton field workers, Neurotoxicology. 31(3):297-304. https://doi.org/10.1016/j.neuro.2010.02.005
  20. Farewell, S. O., F. W. Bowes and D. F. Adams (1977) Evaluation of XAD-2 as a collection medium for 2,4-D herbicides in air. J. Environ. Health. B12:71-83.
  21. Fenske, R. A. (1990) Nonuniform dermal deposition patterns during occupational exposure to pesticides. Arch. Environ. Contam. Toxicol. 19(3):332-337. https://doi.org/10.1007/BF01054974
  22. Fenske, R. A. (1993) Dermal exposure assessment techniques. Ann. Occup. Hyg. 37(6):687-706. https://doi.org/10.1093/annhyg/37.6.687
  23. Fenske, R. A. and E. W. Day JR (2005) Assessment of exposure for pesticide handlers in agricultural, residential and institutional environments. Occupational and residential exposure assessment for pesticides. edited. John Wiley & Sons. Ltd. pp. 11-43.
  24. Franklin, C. A., R. A. Fenske, R. Greenhalgh, L. Mathieu, H. V. Denley, J. T. Leffingwell and R. C. Spear (1981) Correlation of urinary pesticide metabolite excretion with estimated dermal contact in the course of occupational exposure to guthion. J. Toxicol. Environ. Health. 7(5):715-731. https://doi.org/10.1080/15287398109530014
  25. Franklin, C. A. and J. P. Worgan (2005) Occupational and residential exposure assessment for pesticides, Wiley.
  26. Gao, B. B., C. J. Tao, J. M. Ye, J. Ning, X. D. Mei, Z. F. Jiang, S. Chen and D. M. She (2013) Measurement of operator exposure to chlorpyrifos. Pest. Manag. Sci. 70(4):636-641. https://doi.org/10.1002/ps.3601
  27. Grobkopf, C., H. Mielke, D. Westphal, M. E.-Vourliotis, P. Hamey, F. Bouneb, D. Rautmann, F. Stauber, H. Wiche, W. Maasfeld, J. D. Salazar, G. Chester and S. Martin (2013) A new model for the prediction of agricultural operator exposure during professional application of plant protention products in outdoor crops. J. Verbr. Lebensm. 8:143-153. https://doi.org/10.1007/s00003-013-0836-x
  28. Harper, M., M. Z. Akbar and M. E. Andrew (2004) Comparison of wood-dust aerosol size-distributions collected by air samplers. J. Environ. Monit. 6:18-22. https://doi.org/10.1039/b312883k
  29. Hughes, E. A., A. Zalts, J. J. Ojeda, A. P. Flores, R. C. Glass and J. M. Montserrat (2006) Analytical method for assessing potential dermal exposure to captan, using whole body dosimetry, in small vegetable production units in Argentina. Pest. Manag. Sci. 62:811-8. https://doi.org/10.1002/ps.1232
  30. Hughes, E.A., A. P. Flores, L. M. Ramos, A. Zalts, C. R. Glass and J. M. Montserrat (2008) Potential dermal exposure to deltamethrin and risk assessment for manual sprayers: Influence of crop type. Sci. Total Environ. 391:34-40. https://doi.org/10.1016/j.scitotenv.2007.09.034
  31. Johnson, E. R., T. C. Yu and M. L. Montgomery (1977) Trapping and analysis of atmospheric residues of 2,4-D. Bull. Environ. Contam. Toxicol. 17(3):369-372. https://doi.org/10.1007/BF01686092
  32. Kang, T.-S., G.-J. Kim, I.-J. Choi, Y.-J. Kwon, K. R. Kim and K.-S. Lee (2004) Exposure assessment of Korean farmers While applying chlorpyrifos, and chlorothalonil on pear and red pepper. J. Agric. Med. Community Health. 29(2):249-263.
  33. Katinka, V. D. J., E. Tielemans, I. Links, D. Brouwer and J. V. Hemmen (2004) Effectiveness of personal protective equipment: Relevance of dermal and inhalation exposure to chlorpyrifos among pest control operators. J. Occup. Environ. Hyg. 1:355-362. https://doi.org/10.1080/15459620490449710
  34. Kim, E. H., H. R. Lee, H. Choi, J. K. Moon, S. S. Hong, M. H. Jeong, K.-H. Park, H. M. Lee and J.-H. Kim (2011a) Methodology for quantitative monitoring of agricultural worker exposure to pesticides. Kor. J. Pestic. Sci. 15(4):507-528.
  35. Kim, E. H., H. R. Lee, H. Choi, J. K. Moon, S. S. Hong, M. H. Jeong, K.-H. Park, H. M. Lee and J.-H. Kim (2011b) Method validation for monitoring of agricultural worker exposure to insecticide fenthion. Kor. J. Pestic. Sci. 15(4): 357-365.
  36. Kim, E. H., Y. J. Hwang, S. H. Kim, H. R. Lee, S. S. Hong, K. H. Park and J.-H. Kim (2012a) Operator exposure to indoxacarb wettable powder and water dispersible granule during mixing/loading and risk assessment. Kor. J. Pestic. Sci. 16:343-349. https://doi.org/10.7585/kjps.2012.16.4.343
  37. Kim, E. H., J.-K. Moon, H. Choi, S.-M. Hong, D.-H. Lee, H. M. Lee and J.-H. Kim (2012b) Exposure and risk assessment of insecticide methomyl for applicator during treatment on apple orchard. J Korean Soc. Appl. Biol. Chem. 55:95-100.
  38. Kim, E. H., J.-K. Moon, S. H. Kim, Y.-J. Hwang, B.-J. Kim, J. B. Lee, D.-H. Lee and J.-H. Kim (2013) Exposure and risk assessment of operators to inseticide acetamiprid during treatment on apple orchard. Korean J. Hortic. Sci. Technol. 31(2):239-245. https://doi.org/10.7235/hort.2013.12201
  39. Kim, E. H., J. H. Lee., J. H. Sung., J. H. Lee., Y. H. Shin. and J.-H. Kim (2014) Exposure and risk assessment of operator exposure to insecticide acetamiprid during water melon cultivation in greenhouse using whole body dosimetry. Kor. J. Pestic. Sci. 18:247-257. https://doi.org/10.7585/kjps.2014.18.4.247
  40. Korea Crop Protection Association (2014) Agrochemicals use guide book. pp. 254-255, 726.
  41. Leidy, R. B. and C. G. Wright (1991) Trapping efficiency of selected adsorbents for various airborne pesticides. J. Environ. Sci. Health B. 26(4):367-382. https://doi.org/10.1080/03601239109372743
  42. Lesme-Fabian, C., G. Garcia-Santos, F. Leuenberger, D. Nuyttens and C. R. Binder (2012) Dermal exposure assessment of pesticide use: The case of sprayers in potato farms in the Colombian highlands. Sci. Total Environ. 430:202-208. https://doi.org/10.1016/j.scitotenv.2012.04.019
  43. Lewis, R. G. and M. D. Jackson (1982) Modification and evaluation of a high volume air sampler for pesticides and semivolatile industrial organic chemicals. Analytical Chem. 54(3):592-594. https://doi.org/10.1021/ac00240a058
  44. Liu, K. H., C. S. Kim and J.-K. Kim (2003) Human exposure assessment to mancozeb during treatment of mandarin fields. Bull. Environ. Contam. Toxicol. 70:336-342. https://doi.org/10.1007/s00128-002-0196-1
  45. Liden, G., B. Melin, A. Lidblom, K. Lindberg and J.-O. Noren (2000) Personal sampling in parallel with Open-Face filter cassettes and IOM samplers for inhalable Dust-Implications for occupational exposure limits. Appl. Occup. Environ. Hyg. 15(3):263-276, https://doi.org/10.1080/104732200301584
  46. Liden, G. and G. Bergman (2001) Weighing imprecision and handleability of the sampling cassettes of the IOM sampler for inhalable Dust. Ann. Occup. Hyg. 45(3):241-252. https://doi.org/10.1093/annhyg/45.3.241
  47. Lu, C. and R. A. Fenske (1998) Air and surface chlorpyrifos residues following residential broadcast and aerosol pesticide applications. Environ. Sci. Technol. 32(10):1386-1390. https://doi.org/10.1021/es9706716
  48. Machera, K., M. Goumenou, E. Kapetanakis, A. Kalamarakis and C. R. Glass (2003) Determination of potential dermal and inhalation operator exposure to malathion in greenhouses with the whole body dosimetry method. Ann. Occup. Hyg. 47:61-70. https://doi.org/10.1093/annhyg/mef097
  49. Miller, C. S., W. L. Hoover and W. H. Culver (1980) Exposure of pesticide applicators to arsenic Acid. Arch. Environ. Contam. Toxicol. 9(3):281-288. https://doi.org/10.1007/BF01057408
  50. Moon, J. K., S. E. Park, E. H. Kim, H. R. Lee and J.-H. Kim (2013) Risk Assessment of the exposure of insecticide operators to fenvalerate during treatment in apple orchards. J. Agric. Food Chem. 61(2):307-311. https://doi.org/10.1021/jf3043083
  51. NIOSH (1980) Development and validation of methods for sampling and analysis of workplace toxic substances. Research Report. U. S. Department of Health and Human Services. Publ. 80-133.
  52. Niven, K. J. M., A. J. Scott, S. Hagen, E. R. Waclawski, M. Lovett, B., Cherrie, P. L. Bodsworth, A. Rovertson, A. Elder, J. Cocker, B. Nutley and M. Roff (1993) Occupational hygiene assessment of sheep dipping practices and processes. IOM report TM/93/03. Institute of Occupational Medicine, Edinburgh.
  53. OECD (1997) Guidance document for the conduct of studies of occupational exposure to pesticides during agricultural application. OECD environmental gealth and safety publications. Series on Testing and Assessment. Paris: Environmental Directorate. OECD/GD(97).
  54. Oliveira, M. L. and J. G. Machado-Neto (2003) Use of manganese as tracer in the determination of respiratory exposure and relative importance of exposure routes in the safety of pesticide applicators in citrus orchards. Bull. Environ. Contam. Toxicol. 70(3):415-421. https://doi.org/10.1007/s00128-003-0002-8
  55. Ramos, L. M., G. A. Querejeta, A. P. Flores, E. A. Hughes, A. Zalts and J. M. Montserrat (2010) Potential dermal exposure in greenhouses for manual sprayers: Analysis of the mix/load, application and re-entry stages. Sci. Total. Environ. 408:4062-4068. https://doi.org/10.1016/j.scitotenv.2010.05.020
  56. Ramwell, C. T., P. D. Johnson, A. B. A. Boxall and D. A. Rimmer (2005) Pesticide residues on the external surfaces of field crop sprayers: occupational exposure. Ann. Occup. Hyg. 49(4):345-350. https://doi.org/10.1093/annhyg/meh101
  57. Skaugset, N. P., D. G. Ellingsen, H. Noto, L. Jordbekken and Y. Thomassen (2013) Intersampler field comparison of Respicon, IOM, and Closed-Face 25-mm personal aerosol samplers during primary production of aluminium. Ann. Occup. Hyg. 57(8):1054-1064. https://doi.org/10.1093/annhyg/met025
  58. Soutar, A., S. Semple, R. J. Aitken and A. Robertson (2000) Use of patches and whole body sampling for the assessment of dermal exposure. Ann. Occup. Hyg. 44(7):511-518. https://doi.org/10.1093/annhyg/44.7.511
  59. Tannahill, S. N., A., Rovertson, B. Cherrie, P. Donnan, E. L. A., MacConnell and G. J. MacLeod (1996) A comparison of two different methods for assessment of dermal exposure to non-agricultural pesticides in three sectors. IOM report TM/96/07. Institute of Occupational Medicine, Edinburgh.
  60. Turnbull, G. J. (1985) Current trends and future needs in Occupational hazards of pesticide use edited, pp. 99-116, Taylor and Francis. Ltd.
  61. U.S. Environmental Protection Agency (1987) Pesticide assessment guidelines, subdivision U, Applicator exposure monitoring, report No. 540/9-87-127, Office of prevention, pesticides and toxic substances, Washington, DC, USA.
  62. U.S. Environmental Protection Agency (1996) "Occupational and residential exposure test guidelines, OPPTS 875.1000, EPA 712-C-96-261," U.S. EPA, Washington, DC, USA.
  63. Wassie, F., P. Spanoghe, D. A. Tessema and W. Steurbaut (2012) Exposure and health risk assessment of applicators to DDT during indoor residual spraying in malaria vector control program. J. Expo. Sci. Env. Epid. 22:549-558. https://doi.org/10.1038/jes.2012.45
  64. Williams, D. T., C. Shewchuck, G. L. Lebel and N. Muir (1986) Diazinon levels in indoor air after periodic application for insect control. American Industrial Hygiene Association. Fairfax, VA, ETATS-UNIS.
  65. Wojeck, G. A., J. F. Price, H. N. Nigg and J. H. Stamper (1983) Worker exposure to paraquat and diquat. Arch. Environ. Contam. Toxicol. 12(1):65-70. https://doi.org/10.1007/BF01055003
  66. World Health Organization (1982) Field surveys of exposure to pesticides. Standard Protocol. VBC/82.1. WHO. Geneva.
  67. Wright, C. G., R. B. Leidy and H. E. Dupree, Jr. (1993) Cypermethrin in the ambient air and on surfaces of rooms treated for cockroaches. Bull. Environ. Contam. Toxicol. 51(3):356-360.
  68. Zhao M.-A., A. Yu, Y.-Z. Zhu and J.-H. Kim (2015) Potential dermal exposure to flonicamid and risk assessment of applicators during treatment in apple orchards. J. Occup. Environ. Hyg. 12:D147-D152. https://doi.org/10.1080/15459624.2015.1009984

피인용 문헌

  1. Validation protocol for whole-body dosimetry in an agricultural exposure study vol.61, pp.1, 2015, https://doi.org/10.1007/s13765-017-0330-8