DOI QR코드

DOI QR Code

The Effect of Warmer Water Temperature of Walleye Pollock (Gadus chalcogrammus) Larvae

명태 초기 생활사에 고수온이 미치는 영향

  • Yoo, Hae-Kyun (Aquaculture Industry Division, East Sea Fisheries Research Institute) ;
  • Byun, Soon-Gyu (Aquaculture Industry Division, East Sea Fisheries Research Institute) ;
  • Yamamoto, Jun (Field Science Center for Northern Biosphere, Hokkaido University) ;
  • Sakurai, Yasunori (Graduate School of Fisheries Sciences, Hokkaido University)
  • Received : 2015.07.31
  • Accepted : 2015.08.27
  • Published : 2015.08.31

Abstract

We examined the effect of warm temperature on the survival of larvae of walleye pollock and on their swimming behavior during the four days of post-hatch. Observations were conducted on larvae in Petri dishes and in 85 cm tall, cylindrical tanks that had a warmer upper layer and cooler lower layer separated by a small thermocline. Mortality was carried out in four temperature ranges from $3.1^{\circ}C$ to $9.7^{\circ}C$. The number of days to 50 % mortality ($D_{50}$) was longest (18.7 days) at $3.1^{\circ}C$ and decreased with increasing temperature to 10.3 days at $9.7^{\circ}C$. And $D_{50}$ were similar level to that at temperature 3.1 and $5.1^{\circ}C$(17.9 days). Larval responses to warmer temperatures varied depending on developmental stages. 2dph larvae changed the distribution to the thermocline of the water column. And, 3dph larvae had a ability for escaping from the unfavourable warmer temperature. These results suggest that the warmer water negatively affects the larval survival.

고수온이 명태 부화자어에 미치는 영향에 대하여 알아보기 위하여, 수온별 사망률과 부화 4일 후까지의 유영행동을 알아보았다. 실험 수조는 ${\O}10cm{\times}h85cm$ 실린더형 실험수조로 상층과 하층의 수온을 독립적으로 조절하여 작은 규모의 수온약층이 형성되도록 하였다. 실험에 사용한 자어는 친어를 실내사육을 통해 자연산란한 수정란을 부화시켜서 사용하였다. 사망률 실험에는 $3.1^{\circ}C$에서 $9.7^{\circ}C$까지 4개의 수온 범위에서 실시하였다. 50 % 사망까지의 일수는 $3.1^{\circ}C$에서 18.7일, $9.7^{\circ}C$에서 10.3일로 수온이 높아질수록 짧아졌고, $5.1^{\circ}C$에서는 17.9일로 $3.1^{\circ}C$와 유사하였다. 고수온에 대한 부화 자어의 유영 행동은 성장함에 따라 상층 수온이 올라가면 수온약층 부근으로 분포 위치를 바꾸었다. 부화 2일 후 부터 상층의 고수온을 회피하는 경향을 보여주었으며, 부화 3일 후 부터 뚜렷하게 상층의 고수온을 회피하였다. 이 결과는 산란장의 표층 수온이 상승하면 부화 자어에 부정적인 영향을 미칠 것을 시사한다.

Keywords

References

  1. Bailey, K. M. and C. L. Stehr(1986), Laboratory studies on the early life history of the walleye pollock, Theragra chalcogramma (Pallas), Journal of Experimental Marine Biology and Ecology, Vol. 99, pp. 233-246. https://doi.org/10.1016/0022-0981(86)90225-X
  2. Blood, D. M., A. C. Matarese and M. M. Yoklavich(1994), Embryonic development of walleye pollock, Theragra chalcogramma, from Shelikof Strait, Gulf of Alaska. Fishery Bulletin, Vol. 92, pp. 207-222.
  3. Brierley, A. S. and M. J. Kingsford(2009), Impacts of climate change on marine organisms and ecosystems, Current biology, Vol. 19, pp. R602-R614. https://doi.org/10.1016/j.cub.2009.05.046
  4. Cohen, D. M., T. Inada, T. Iwamoto and N. Scialabba(1990), FAO species catalogue Vol. 10. gadiform fishes of the world (Order gadifores): An annotated and illustrated catalogue cods, hakes, grenadiers and other gadiform fishes known to date. FAO Fisheries Synopsis, No. 125, Vol. 10, Rome, p. 442.
  5. Doney, S. C., M. Ruckelshaus, J. Emmett, J. P. Barry, F. Chan, C. A. English, H. M. Galindo, J. M. Grebmeier, A. B. Hollowed, N. Knowlton, J. Polovina, N. N. Rabalais, W. J. Sydeman and L. D. Talley(2012), Climate change impacts on marine ecosystems, Annual Review of Marine Science, Vol. 4, pp. 11-37. https://doi.org/10.1146/annurev-marine-041911-111611
  6. Funamoto, T.(2007), Temperature-dependent stock-recruitment model for walleye pollock (Theragra chalcogramma) around northern Japan, Fisheries Oceanography, Vol. 16, pp. 515-525. https://doi.org/10.1111/j.1365-2419.2007.00454.x
  7. Houde, E. D.(1987), Fish early life dynamics and recruitment variability, American Fisheries Society Symposium, Vol. 2, pp. 17-29.
  8. Kang, S., J. H. Park and S. Kim(2013), Size-class Estimation of the Number of Walleye Pollock Theragra chalcogramma Caught in the Southwestern East Sea during the 1970s-1990s, Korean Journal of Fisheries and Aquatic Sciences, Vol. 46, No. 4, pp. 445-453. https://doi.org/10.5657/KFAS.2013.0445
  9. Kim, S. and S. Kang(1998), The status and research direction for fishery resources in the East Sea/Sea of Japan, Journal of the Korean Society of Fisheries Resources, Vol. 1, pp. 44-58.
  10. Lee, Y. and D. Kim(2010), Measuring Surface Water Temperature Effects on the Walleye Pollock Fishery Production using a Translog Cost Function Approach, Environmental and Resource Economics Review, Vol. 19, No. 4, pp. 897-916.
  11. Maeda, T., T. Takahashi, M. Ijichi, H. Hirakawa and M. Ueno(1976), Ecological studies on the Alaska pollack in the adjacent waters of the Funka Bay, Hokkaido [Japan], 2: Spawning season, Bulletin of the Japanese Society of Scientific Fisheries, Vol. 42, pp. 1213-1222. https://doi.org/10.2331/suisan.42.1213
  12. Nakatani, T.(1988), Studies on the early life history of walleye pollock Theragra chalcogramma in Funka bay and vicinity, Hokkaido[Japan], Memoirs of the Faculty of Fisheries Hokkaido University, Vol. 35, pp. 1-46.
  13. Nakatani, T. and T. Maeda(1984), Thermal effect on the development of walleye pollock eggs and their upward speed to the surface, Bulletin of the Japanese Society of Scientific Fisheries, Vol. 50, pp. 937-942. https://doi.org/10.2331/suisan.50.937
  14. Nakatani, T., K. Sugimoto, T. Takatsu and T. Takahashi(2003), Environmental factors in Funka Bay, Hokkaido, affecting the year class strength of walleye pollock, Theragra chalcogramma, Bulletin of the Japanese Society of Fisheries Oceanography, Vol. 67, pp. 23-28.
  15. National Research Council(1996), The Bering Sea ecosystem, National Academy Press, Washington, DC.
  16. Perry, A. L., P. J. Low, J. R. Ellis and J. D. Reynolds(2005), Climate change and distribution shifts in marine fishes, Science, Vol. 308, pp. 1912-1915. https://doi.org/10.1126/science.1111322
  17. Porter, S. M.(2001), Effects of size and light on respiration and activity of walleye pollock (Theragra chalcogramma) larvae, Journal of experimental marine biology and ecology, Vol. 256, pp. 253-265. https://doi.org/10.1016/S0022-0981(00)00319-1
  18. Ryan, T. H.(1960), Significance tests for multiple comparison of proportions, variance, and other statistics, Psychological bulletin, Vol. 57, p. 318. https://doi.org/10.1037/h0044320
  19. Sakurai, Y.(1989), Reproductive characteristics of walleye pollock with special reference to ovarian development, fecundity and spawning behavior. In: Proceedings of the International Symposium on the Biology and Management of Walleye Pollock, Alaska Sea Grant Rep, Fairbanks, pp. 97-115
  20. Yamashita, Y. and K. M. Bailey(1989), A laboratory study of the bioenergetics of larval walleye pollock, Theragra chalcogramma, Fishery Bulletin, Vol. 87, pp. 525-536.
  21. Yoo, H. K., J. Yamamoto, T. Saito and Y. Sakurai(2014), Laboratory observations on the vertical swimming behavior of Japanese common squid Todarodes pacificus paralarvae as they ascend into warm surface waters, Fisheries Science, Vol. 80, pp. 925-932. https://doi.org/10.1007/s12562-014-0767-1

Cited by

  1. Changes in the Biological Characteristics of Walleye Pollock Related to Demographic Changes in the East Sea During the Late 20th Century vol.10, pp.2, 2018, https://doi.org/10.1002/mcf2.10004
  2. 동해 명태(Gadus chalcogrammus) 서식처 표층수온 장기 변동 특성 vol.26, pp.2, 2020, https://doi.org/10.7837/kosomes.2020.26.2.195
  3. Influence of Salinity on Hatching Rate of Fertilization Eggs and Larval Survival of Walleye Pollock Gadus chalcogrammus vol.32, pp.3, 2015, https://doi.org/10.13000/jfmse.2020.6.32.3.725
  4. 명태(Gadus chalcogrammus)의 일차 간세포 배양에서 온도 스트레스에 따른 HSP70 mRNA와 단백질 발현 vol.29, pp.6, 2015, https://doi.org/10.5322/jesi.2020.29.6.633
  5. Effects of light intensity and photoperiod on survival and growth of walleye pollock (Gadus chalcogrammus) larvae vol.33, pp.4, 2015, https://doi.org/10.13000/jfmse.2021.8.33.4.859