Acknowledgement
Supported by : Ministry of Science and Technology of Taiwan
References
- Ahmedzade, P. and Sengoz, B. (2009), "Evaluation of steel slag coarse aggregate in hot mix asphalt concrete", Hazard Mater., 165(1-3), 300-305. https://doi.org/10.1016/j.jhazmat.2008.09.105
- Ameri, M. and Ali, B. (2012), "Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates", Constr. Build Mater., 26(1), 475-480. https://doi.org/10.1016/j.conbuildmat.2011.06.047
- ASTM C114, Standard test methods for chemical analysis of hydraulic cement.
- ASTM C1293, Standard test method for determination of length change of concrete due to alkali-silica reaction.
- ASTM C150, Standard specification for portland cement.
- ASTM C151, Standard test method for autoclave expansion of portland cement.
- ASTM C33, Standard specification for concrete aggregates.
- Auriol, J.C. (2004), "Expansion volumique de la chaux et de la magnesia vives (libres) lors de leur hydratation", Laitiers. Sider., 85, 6-12.
- Bi, C., Zhang, M. and Zhang, Z. (2004), "The application study on CFB slag in concrete", Fly Ash Comprehens. Utilization, 4, 18-20.
- Chaurand, P., Rose, J., Briois, V., Olivi, L., Hazemann, J.L., Proux, 0., Domas, J. and Bottero, J.Y (2007), "Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach", Hazard Mater., 139(3), 537-542. https://doi.org/10.1016/j.jhazmat.2006.02.060
- Cyr, M., Rivard, P. and Labrecque, F. (2009), "Reduction of ASR-expansion using powders ground from various sources of reactive aggregates", Cement Concrete Compos., 31(7), 436-446.
- Etxeberria, M., Pacheco, C., Meneses, J.M. and Berridi, I. (2010), "Properties of concrete using metallurgical industrial by-products as aggregates", Constr. Build Mater., 24, 1594-1600. https://doi.org/10.1016/j.conbuildmat.2010.02.034
- Huang, Y., Bird, R. and Heidrich, O. (2007), "A review of the use of recycled solid waste materials in asphalt pavements", Resour. Conserv. Recycl., 52(1), 58-73. https://doi.org/10.1016/j.resconrec.2007.02.002
- Ivanka, N. (2011), "Utilisation of steel slag as an aggregate in concrete", Mater. Struct, 44(9), 1565-1575. https://doi.org/10.1617/s11527-011-9719-8
- Kamile, I. (2006), "Effect of SO3 content and fineness on the rate of delayed ettringite formation in heat cured portland cement mortars", Cement Concrete Compos., 28, 761-772. https://doi.org/10.1016/j.cemconcomp.2006.06.003
- Kelham, S. (2006), "The effect of cement composition and fineness on expansion associated with delayed ettringite formation", Cement Concrete Compos., 18(3), 171-179. https://doi.org/10.1016/0958-9465(95)00013-5
- Kuo, W.T. and Shu, C.Y. (2014), "Application of high-temperature rapid catalytic technology to forecast the volumetric stability behavior of containing steel slag mixtures", Constr. Build. Mater., 50, 463-470. https://doi.org/10.1016/j.conbuildmat.2013.09.030
- Kuo, W.T., Shu, C.Y. and Han, Y.W. (2014), "Electric arc furnace oxidizing slag mortar with volume stability for rapid detection", Constr. Build Mater., 53, 635-641. https://doi.org/10.1016/j.conbuildmat.2013.12.023
- Kuo, W.T. and Shu, C.Y. (2015), "Expansion behavior of low-strength steel slag mortar during high-temperature catalysis", Comput. Concrete, 16(2), 261-274. https://doi.org/10.12989/cac.2015.16.2.261
- Li, C.M. and Li, W.J. (2005), "Discussion on quality & expansiveness of expansive material-magnesium oxide", Des. Hydroelectr. Power Sin., 21(3), 95-99.
- Li, Y.F., Yao, Y. and Wang, L. (2009), "Recycling of industrial waste and performance of steel slag green concrete", J. Cent South. Univ. Tech., 16, 768-773. https://doi.org/10.1007/s11771-009-0128-x
- Lin, H.Y., Yang, Y.F., Wang, Y.J., Wang, Y.A. and Wang, X.F. (2013), "Effect of aggregate size on ASR expansion and progress of its prediction model", Bull. Chin. Ceram. Soc., 32(5), 890-894.
- Lin, S.Y. (2006), "Microstructure of expansive BOF slag and its influence on the swelling behaviors", Master Thesis, National Kaohsiung University of Applied Sciences, Taiwan. (in Chinese)
- Lukschova, S., Prikryl, R. and Pertold, Z. (2009), "Petrographic identification of alkali-silica reactive aggregates in concrete from 20th century bridges", Constr. Build. Mater., 23(2), 734-741. https://doi.org/10.1016/j.conbuildmat.2008.02.020
- Lun, Y., Zhou, M., Cai, X. and Xu, F. (2008), "Methods for improving volume stability of steel slag as fine aggregate", J. Wuhan. Univ. Technol., 3, 737-742.
- Multon, S., Cyr, M. and Sellier, A. (2010), "Effects of aggregate size and alkali content on ASR expansion", Cem. Caner. Res., 40(4),506-516.
- Multon, S., Cyr, M., Sellier, A., Leklou, N. and Petit, L. (2008), "Coupled effects of aggregate size and alkali content on ASR expansion", Cement Concrete Res., 38(3), 350-359. https://doi.org/10.1016/j.cemconres.2007.09.013
- Naganathan, S., Razak, H.A. and Hamid, S.N.A. (2012), "Properties of controlled low-strength material made using industrial waste incineration bottom ash and quarry dust", Mater. Des., 33, 56-63. https://doi.org/10.1016/j.matdes.2011.07.014
- Naganathan, S., Razak, H.A. and Nadzrian, A.H. (2010), "Effect of kaolin addition on the performance of controlled low-strength material using industrial waste incineration bottom ash", Waste. Manage. Res., 28(9), 848-860. https://doi.org/10.1177/0734242X09355073
- Ortega-Lopez, V., Manso, J.M., Cuesta, I.I. and Gonzalez, J.J. (2014), "The long-term accelerated expansion of various ladle-furnace basic slags and their soil-stabilization applications", Constr. Build Mater., 68, 455-464. https://doi.org/10.1016/j.conbuildmat.2014.07.023
- Poyet, S., Sellier, A., Capra, B., Foray, G., Torrenti, J.M., Cognon, H. and Bourdarot, E. (2007), "Chemical modelling of alkali silica reaction: influence of the reactive aggregate size distribution", Mater. Struct., 40(2), 229-239. https://doi.org/10.1617/s11527-006-9139-3
- Shen, D.H., Wu, C.M. and Du, J.C. (2009), "Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture", Constr. Build. Mater., 23, 453-461. https://doi.org/10.1016/j.conbuildmat.2007.11.001
- Shen, W., Zhou, M., Ma, W., Hu, J. and Cai, Z. (2009), "Investigation on the application steel slag-fly ash-phosphogypsum solidified material as road base material", Hazard. Mater., 164(1), 99-104. https://doi.org/10.1016/j.jhazmat.2008.07.125
- Siddique, R. (2009), "Utilization of waste materials and by-products in producing controlled low-strength materials", Resour. Conserv. Recycl., 54(1), 1-8. https://doi.org/10.1016/j.resconrec.2009.06.001
- Sofilic, T., Merle, V., Rastovcan-Mioc, A., Cosic, M. and Sofilic, U.(2010), "Steel slag instead natural aggregates in asphalt mixture", Arch. Metall. Mater., 55(3), 657-668.
- Sorlini, S., Sanzeni, A. and Rondi, L. (2012), "Reuse of steel slag in bituminous paving mixtures", Hazard. Mater., 209-210, 84-91. https://doi.org/10.1016/j.jhazmat.2011.12.066
- Suer, P., Lindqvist, J.E., Arm, M. and Frogner-Kockum, P. (2009), "Reproducing ten years of road ageing-accelerated carbonation and leaching of EAF steel slag", Sci. Total. Environ., 407(18), 5110-5118. https://doi.org/10.1016/j.scitotenv.2009.05.039
- US federal enviromnent protection agency (2010), Use of recycled industrial materials in roadways. http://www.epa.gov/osw/conserve/mlimr/pdfs/roadways.pdf
- Waligora, J., Bulteel, D., Degrugilliers, P., Damidot, D., Potdevin, J.L. and Measson, M. (2010), "Chemical and mineralogical characterizations of LD converter steel slags: A multi-analytical techniques approach", Mater. Charaet, 61(1), 39-48. https://doi.org/10.1016/j.matchar.2009.10.004
- Wang, A., Deng, M., Sun, D., Li, B. and Tang, M.S. (2012), "Effect of crushed air-cooled blast furnace slag on mechanical properties of concrete", J. Wuhan. Univ. Teehnol.-Mater. Sci. Ed., 27(4), 758-762. https://doi.org/10.1007/s11595-012-0543-y
- Wang, C.H. (2014), "Feasibility of stabilizing expanding property of furnace slag by autoclave method", Constr. Build Mater., 68, 552-557. https://doi.org/10.1016/j.conbuildmat.2014.06.082
- Wang, G. (2010), "Determination of the expansion force of coarse steel slag aggregate", Constr. Build. Mater., 24(10), 1961-1966. https://doi.org/10.1016/j.conbuildmat.2010.04.004
- Wang, G., Wang, Y. and Gao, Z. (2010), "Use of steel slag as a granular material: Volume expansion prediction and usability criteria", Hazard Mater., 184(1-3), 555-560. https://doi.org/10.1016/j.jhazmat.2010.08.071
- Wu, S., Xue, Y., Ye, Q. and Chen, Y. (2007), "Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures", Build. Environ., 42, 2580-2585. https://doi.org/10.1016/j.buildenv.2006.06.008
- Yildirim, I.Z. and Prezzi, M. (2009), "Use of steel slag in subgrade applications", Publication FWA/IN/JTRP-2009/32. Joint Transportation Research Program, West Lafayette, Indiana: Indiana Department of Transportation and Purdue University.
- Yin, L.Q. and Xie, L. (2007), "The application study of circulating fluidized bed boiler slag", Elec. Power Environ. Protect, 23(6),60-62.
- Yu, S.K. (2011), "ASR expansion behavior of recycling waste fine aggregates in concrete", Master Thesis, National Central University, Taiwan. (in Chinese)
Cited by
- Analytical model of expansion for electric arc furnace oxidizing slag-containing concrete vol.18, pp.5, 2016, https://doi.org/10.12989/cac.2016.18.5.937
- Time-Dependent Strength Behavior, Expansion, Microstructural Properties, and Environmental Impact of Basic Oxygen Furnace Slag-Treated Marine-Dredged Clay in South Korea vol.13, pp.9, 2021, https://doi.org/10.3390/su13095026