References
- Akkas, N., Akay, H.U. and Yilmaz, C.(1979), "Applicability of general-purpose finite element programs in solid-fluid interaction problems", Comput. Struct., 10(5), 773-783. https://doi.org/10.1016/0045-7949(79)90041-5
- Akkose, M. and Simsek, E. (2010), "Non-linear seismic response of concrete gravity dams to near-fault ground motions including dam-water-sediment-foundation interaction", Appl. Math. Model., 34(11), 3685-3700. https://doi.org/10.1016/j.apm.2010.03.019
- Bathe, K.J. (1996), "Finite Element Procedures in Engineering Analysis", Englewood Cliffs, New Jersey, Prentice-Hall.
- Bayraktar, A., Altunisik, A.C., Sevim, B., Kartal, M.E. and Turker, T. (2008), "Near-fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems", Struct. Eng. Mech., 28(4), 411-442. https://doi.org/10.12989/sem.2008.28.4.411
- Bayraktar, A., Altunisik, A.C., Sevim, B., Kartal, M.E., Turker, T. and Bilici, Y. (2009), "Comparison of near-and far-fault ground motion effect on the nonlinear response of dam-reservoir-foundation systems", Nonlinear. Dynam., 58(4), 655-673. https://doi.org/10.1007/s11071-009-9508-x
- Bayraktar, A., Turker, T., Akkose, M. and Ates, S. (2010), "The effect of reservoir length on seismic performance of gravity dams to near- and far-fault ground motions", Nat. Hazards., 52(2), 257-275. https://doi.org/10.1007/s11069-009-9368-1
- Calayir, Y. (1994), "Dynamic Analysis of Concrete Gravity Dams Using Euler and Lagrange Approaclies", PhD. Thesis, Karadeniz Technical University, Trabzon, Turkey.
- Calayir, Y., Dumanoglu, A.A. and Bayraktar, A. (1996), "Earthquake analysis of gravity dam-reservoir systems using tlie Eulerian and Lagrangian approaches", Comput. Struct., 59(5), 877-890. https://doi.org/10.1016/0045-7949(95)00309-6
- Chen, B. and Yuan, Y. (2011), "Hydrodynamic pressures on arch dam during earthquakes", J. Hydraul. Eng. -ASCE, 137(1),34-44. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000268
- Chopra, A.K. (1967), "Hydrodynamic pressures on dams during earthquake", J. Eng. Mech. - ASCE, 93(6), 205-223.
- Clough, R.W. and Penzien, J. (1975), "Dynamics of Structures", McGraw-Hill, New York, USA.
- Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), "Concept and Applications of Finite Element Analysis", John Wiley and Sons., Singapore.
- Degroote, J., Annerel, S. and Vierendeels, J. (2010), "Stability analysis of Gauss-Seidel iterations in a partitioned Simulation of fluid-structure interaction", Comput. Struct., 88(5-6), 263-271. https://doi.org/10.1016/j.compstruc.2009.09.003
- Fathi, A. and Lotfi, V. (2008), "Effects of reservoir length on dynamic analysis of concrete gravity dams", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China.
- Gogoi, I. and Maity, D. (2010), "A novel procedure for determination of hydrodynamic pressure along upstream face of dams due to earthquakes", Comput. Struct., 88(5-6), 539-548. https://doi.org/10.1016/j.compstruc.2010.01.007
- Heydari, M.M. and Mansoori, A. (2011), "Dynamic analysis of dam-reservoir interaction in time domain." World. Appl. Sci. J., 15(10), 1403-1408.
- Lin, G., Wang, Y. and Hu, Z. (2012), "An efficient approach for frequency-domain and time-domain hydrodynamic analysis of dam-reservoir systems", Earthq. Eng. Struct. Dyn., 41(13), 1725-1749. https://doi.org/10.1002/eqe.2154
- Miquel, Band Bouaanani, N. (2013), "Accounting for earthquake-induced dam-reservoir interaction using modified accelerograms", J. Hydraul. Eng. - ASCE, 139(9), 1608-1617.
- Samii, A. and Lotfi, V. (2007), "Comparison of coupled and decoupled modal approaches in seismic analysis of concrete gravity dams in time domain", Finite. Elem. Anal. Des., 43(13), 1003-1012. https://doi.org/10.1016/j.finel.2007.06.015
- Samii, A. and Lotfi, V. (2013), "A high-order based boundary condition for dynamic analysis of infinite reservoirs", Comput. Struct., 120, 65-76. https://doi.org/10.1016/j.compstruc.2013.02.002
- Sevim, B., Altunisik, A.C., Bayraktar, A., Akkose, M. and Calayir, Y. (2011a), "Water length and height effects on the earthquake behavior of arch dam-reservoir-foundation systems", KSCE. J. Civil. Eng., 15(2), 295-303. https://doi.org/10.1007/s12205-011-0815-7
- Sevim, B., Bayraktar, A., Altunisik, A.C. (2011b), "Finite element model calibration of Berke arch dam using operational modal testing", J. Vib. Control., 17(7), 1065-1079. https://doi.org/10.1177/1077546310377912
- Shariatmadar, H. and Mirhaj, A. (2011). "Dam-reservoir-foundation interaction effects on the modal characteristic of concrete gravity dams", Struct. Eng. Mech., 38(1), 65-79. https://doi.org/10.12989/sem.2011.38.1.065
- Wang, H., Feng, M. and Yang, H. (2012). " Seismic nonlinear analyses of a concrete gravity dam with 3D full dam model", Bull. Earthq. Eng., 10(6), 1959-1977. https://doi.org/10.1007/s10518-012-9377-4
- Westergaard, H.M. (1933), "Water Pressures on Dams during Earthquakes", Trans. Am. Soc. Civil. Eng., 98(2),418-433.
- Wick, T. (2013), "Coupling of fully Eulerian and arbitrary Lagrangian-Eulerian methods for fluid-structure interaction computations", Comput. Mech., 52(5), 1113-1124. https://doi.org/10.1007/s00466-013-0866-3
- Wilson, E.L. and Khalvati, M. (1983), "Finite elements for the dynamic analysis of fluid-solid systems", Int. J. Numer. Method. Eng., 19(11), 1657-1668. https://doi.org/10.1002/nme.1620191105
- Wood, C., Gil, A.J., Hassan, O. and Bonet, J. (2010). "Partitioned block-Gauss-Seidel coupling for dynamic fluid-structure interaction", Comput. Struct., 88(23-24), 1367-1382. https://doi.org/10.1016/j.compstruc.2008.08.005
- Zeinkiewicz, O.C. and Taylor, R.L. (1991), Finite Element Method, McGraw-Hill, London.
Cited by
- Arrival direction effects of travelling waves on nonlinear seismic response of arch dams vol.18, pp.2, 2016, https://doi.org/10.12989/cac.2016.18.2.179
- Seismic behavior of concrete gravity dams vol.1, pp.2, 2016, https://doi.org/10.12989/acd.2016.1.2.195
- Deformation and stress behavior analysis of high concrete dam under the effect of reservoir basin deformation vol.18, pp.6, 2016, https://doi.org/10.12989/cac.2016.18.6.1153
- An approach of evaluation and mechanism study on the high and steep rock slope in water conservancy project vol.19, pp.5, 2017, https://doi.org/10.12989/cac.2017.19.5.527
- Geometrical dimensions effects on the seismic response of concrete gravity dams vol.6, pp.3, 2015, https://doi.org/10.12989/acc.2018.6.3.269
- Seismic Improvement of Gravity Dams Using Isolation Layer in Contact Area of Dam-Reservoir in Smeared Crack Approach vol.43, pp.2, 2015, https://doi.org/10.1007/s40996-018-0111-6
- Performance Evaluation of Gravity Dams Subjected to Near- and Far-Fault Ground Motion Using Euler Approaches vol.43, pp.2, 2019, https://doi.org/10.1007/s40996-018-0142-z
- Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions vol.25, pp.3, 2015, https://doi.org/10.12989/cac.2020.25.3.255
- Structural response of concrete gravity dams under blast loads vol.9, pp.5, 2020, https://doi.org/10.12989/acc.2020.9.5.503
- Investigation of a New Shock Factor to Assess an Air-Backed Structure Subjected to a Spherical Wave Caused by an Underwater Explosion vol.146, pp.10, 2015, https://doi.org/10.1061/(asce)st.1943-541x.0002788
- Influences on the Seismic Response of a Gravity Dam with Different Foundation and Reservoir Modeling Assumptions vol.13, pp.21, 2015, https://doi.org/10.3390/w13213072