References
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Expert. Syst. Appl., 38(8), 9009-9618.
- Chu, I., Amin, M.N. and Kim, J.K. (2013), "Prediction model for the hydration properties of concrete", Comput. Concrete., 12(4), 377-392. https://doi.org/10.12989/cac.2013.12.4.377
- Chen, B., Li, F.Q. and Liu, G.H. and Liu, X. (2005), "Study on nonlinear multi-objective optimization algorithm for concrete mix proportions", J. Zhejiang. Univ. (Eng. Sci.), 39(1), 16-19.
- Huang, C.H., Lin, S.K. and Chang, C.S. and Chen, H.J. (2013), "Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash", Constr. Build. Mater., 46(9), 71-78. https://doi.org/10.1016/j.conbuildmat.2013.04.016
- Cheng, M.Y., Chou, J.S. and Andreas, F.V. and Wu, Y.W. (2012), "High-performance concrete compressive strength prediction using time-weighted evolutionary fuzzy support vector machines inference model", Automat. Constr., 28, 106-115. https://doi.org/10.1016/j.autcon.2012.07.004
- Dias, W.P.S. and Pooliyadda, S.P. (2001), "Neural networks for predicting properties of concretes with admixtures", Constr. Build. Mater., 15(7), 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X
- Slowinski, R. (1992), Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, Boston.
- Werbos, P.J. (1974), "Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences", Ph.D. Thesis, Harvard University.
- Liu, J. (1997), "Quality prediction for concrete manufacturing", Automat. Constr., 5(6), 491-499. https://doi.org/10.1016/S0926-5805(96)00183-5
- Yuan, Z., Wang, L.N. and Ji, X. (2014), "Prediction of concrete compressive strength: research on hybrid models genetic based algorithms and ANFIS", Adv. Eng. Softw., 67(1), 156-163. https://doi.org/10.1016/j.advengsoft.2013.09.004
- Amani, J. and Moeini, R. (2012), "Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network", Sci. Iran. A., 19(2), 242-248 https://doi.org/10.1016/j.scient.2012.02.009
- Yurdakul, E.(2013), "Proportioning for performance-based concrete pavement mixtures", Ph.D. Dissertation. Iowa State University.
- Akkurt, S., Ozdemir, S. and Tayfur, G. and Akyol, B. (2003), "The use of GA-ANNs in the modeling of compressive strength of cement mortar", Cement. Concr. Res., 33(7), 973-979. https://doi.org/10.1016/S0008-8846(03)00006-1
- Oh, J.W., Lee, I.W., Kim, J.T. and Lee, G.W. (1999), "Application of neural networks for proportioning of concrete mixes", ACI. Mater. J., 96(1), 61-67.
- Yeh, I.C. (1999), "Design of high-performance concrete mixture using neural networks and nonlinear programming", J. Comput. Civil. Eng., 13(1), 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
Cited by
- Predicting the mechanical properties of ordinary concrete and nano-silica concrete using micromechanical methods vol.43, pp.12, 2018, https://doi.org/10.1007/s12046-018-0965-0